Class Notes 4/28/15: Inapproximability maximization

Say want to prove problem Π_1 hard to approximate.

Gap reduction from a problem Π_2 that we already know is NP-hard (e.g., SAT)

\[f : \text{ESAT} \rightarrow \text{ESAT} \]

$\Pi_2 \approx \text{SAT}$

Say could approximate Π_1 better than $\frac{\alpha}{\beta}$.

Say γ-approx to Π_1, i.e. $\gamma < \frac{\alpha}{\beta}$.

\[\Rightarrow \text{on SAT instance } x, \text{ use reduction to get } F(x), \text{ run } \gamma \text{-approx on } F(x) \text{ to get ALG} \]

If x is not satisfiable, then $\gamma \text{-opt}(F(x)) \leq \delta \beta < \alpha$.

If x is satisfiable, then $\text{ALG} \geq \gamma \text{-opt}(F(x)) \geq \alpha \beta \delta > \beta$.

\[\Rightarrow \text{polytime alg. for SAT.} \]

Usually easier to start w/ a problem where there's already a gap, e.g. if we are want to prove hardness for Π_3,

\[\text{out} \leq \text{opt} \]

\[\text{out} > \text{opt} \]

\[\text{out} \leq \text{opt} \]

\[\text{out} > \text{opt} \]

\[\Gamma_1 \]

Doesn't matter what reduction does to middle!
So generic reduction technique: start w/ problem \(\Pi_2 \) where \(\Pi_2 \in \text{NP-hard to distinguish instances are partitioned into 3 groups: YES, NO, MAYBE, and is NP-hard to distinguish YES instances from NO instances. \} \)

- completeness: If \(x \in \text{YES} \), \(\text{OPT}(F(x)) \geq \alpha \)
- soundness: If \(x \in \text{NO} \), \(\text{OPT}(F(x)) \leq \beta \)

More powerful than usual reductions since don't need to worry about what happens to MAYBE.

Can get pretty far w/ this (Book 16.1, 16.2), but real improvement from PCP theorem.

Def: \(\text{LENP} \) if \(\exists \) polynomial \(p \) and alg. \(A \) s.t. \(x \in L \), there exists \(\text{proof} \ y \) s.t.

1. if \(x \in L \), \(\exists \) proof \(y \) s.t. \(|y| \leq p(|x|) \) and \(A(x,y) \) returns \text{YES} w/ \text{one-sided error} \(\leq p(|x|) \)
2. if \(x \notin L \), then \(A(x,y) \) returns \text{NO}.

Def: A probabilistic proof system is a verifier \(A \) s.t.

1. Verifier reads \(r(n) \) random bits w/ \(c(n) \)
2. Verifier reads \(r(n) \) bits of a (proof
3. If \(x \in L \), then a verifier returns \text{YES} w/ \text{wp.} \geq c(n) \) (completeness)
4. If \(x \notin L \), then a verifier returns \text{YES} w/ \text{wp.} \leq s(n) \) (soundness)

Example: If \(\text{LENP} \), then \(L \) has a probabilistic proof system w/ \(r(n) = 0 \), \(c(n) = 0 \), \(s(n) = 0 \).
NEP: Let \(\text{PCP}_{\epsilon_0, \delta_0} (x^n, y^n) \) be the class of languages that have a probabilistic proof system with parameters
\((\epsilon_0, \delta_0, n) \).

So in this setting, \(\text{NP} = \text{PCP}_{\epsilon_0, \delta_0} (O(1), \text{poly}(n)) \).

Theorem (PCP Thm): \(\text{NP} = \text{PCP}_{\frac{1}{2}, 1} (O(k), O(1)) \)

Easy direction: \(\text{PCP}_{\frac{1}{2}, 1} (O(k), O(1)) \subseteq \text{NP} \).

For each choice of \(O(k) \) random bits, the verifier checks \(O(1) \) bits of the proof.

\(\implies \) only \(2^{O(k)} \cdot O(1) = \text{poly}(k) \) bits of proof need ever be looked at.

So \(\text{NP} \) verifier \(A \) can simply try each \(2^{O(k)} \) possible choices of random bits, simulate \(\text{PCP} \) verifier on each one, return \(\text{YES} \) if all runs return \(\text{YES} \) & return \(\text{NO} \) otherwise.

- If \(x \in L \) then \(\text{PCP} \) proof verifier always returns \(\text{YES} \).
- If \(x \notin L \) then on \(\approx \frac{1}{2} \) choices of random bits, \(\text{PCP} \) verifier returns \(\text{NO} \) \(\implies \) \(\text{NP} \) verifier will return \(\text{NO} \).

Real difficulty is proving \(\text{NP} = \text{PCP}_{\frac{1}{2}, 1} (O(k), O(1)) \).

Why is this useful? for proving hardness of approximation?

Intuition: Let \(T \) be arbitrary \(\text{NP} \)-complete problem (e.g., 3SAT).

Consider problem \(T \).

Then by PCP Thm: \(A \) \(\text{NP} \) verifier \(\neq O(k) \) random bits, \(O(1) \) query \(\text{poly}(k) \) bits.

\[\text{poly}(k) = \text{poly}(\log n) \]
Let T' be the problem of designing a proof to maximize probability that verifying says YES.

By def, hard to approximate better than $\frac{1}{2}$.

What kind of problem? A CSP!

For each of the poly(n) choices of random bits, verifier computed a (deterministic) function

$f(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are the first bits queried.

\exists poly(n) constraints, each $a(x, y)$ is 1 if $x \oplus y = 0$ s.t.

satisfied constraints.

If have soundness $s(x)$, completeness $c(x)$, hard to approx better than $\frac{f(n)}{c(n)}$.

By rewriting arbitrary $f(x)$ as 3CNF formula, gives $\frac{1}{2}$-hardness for Max-3SAT.

Can do better by restricting these functions through different versions of PCP

Def: let $\text{odd}(x, y, z) = 1$ if $x + y + z$ odd, $\text{even}(x, y, z) = 1$ if $x + y + z$ even.

Then H falsify: For any constant $\delta, \epsilon > 0$

$NP \subseteq \text{PCP}_{\delta, \epsilon} \text{ poly}(\log n, 1)$ and verifier restricted to odd and even $f(x)$

Then: \exists poly-time algorithm that is NP-hard to approximate Max-3SAT better than $\frac{7}{8} + \epsilon$
PE: Stat w/ arbitrary NP-complete problem SAT.

By Hatsett, I verified NP-completeness 1-2 randomness $\mathcal{O}(\log)$ random bits and making 3 queries using odd even tests (b).

Let $N = 2^m$ be the number of random strings used.

Each of N random strings gives three bits and an odd (even) test x_i.

We will construct Max-3SAT instance out of these N tests.

For each even test x_i, create 4 clauses:

- $x_i \lor \overline{x}_j \lor \overline{x}_k$
- $\overline{x}_i \lor x_j \lor x_k$ \quad \text{if odd}(x_i, x_j, x_k) \text{ satisfied, all 4 clauses satisfied}
- $x_i \lor \overline{x}_j \lor \overline{x}_k$ \quad \text{if odd}(x_i, x_j, x_k) \text{ not satisfied}
- $\overline{x}_i \lor x_j \lor \overline{x}_k$ \quad \text{then exactly 3 clauses satisfied}

For each even (x_i, x_j, x_k) constraint, 4 clauses:

- $x_i \lor x_j \lor x_k$
- $\overline{x}_i \lor \overline{x}_j \lor \overline{x}_k$ \quad \text{if even}(x_i, x_j, x_k) \text{ satisfied, all 4 clauses satisfied}
- $x_i \lor \overline{x}_j \lor \overline{x}_k$ \quad \text{if exactly 3 satisfied}
- $\overline{x}_i \lor x_j \lor \overline{x}_k$ \quad \text{otherwise}

Consider instance q. If $q \in \text{SAT}$ (Yes instance), then

3 proof s.t. verifier accepts w.p. $\ge 1 - \varepsilon$ (Hatsett).

\Rightarrow there is a way of satisfying $\ge 4(1 - 2\varepsilon)N + 2\varepsilon N$

$\ge (4 - 5\varepsilon)N$ clauses of $T(q)$

If $q \notin \text{SAT}$ (No instance), then \forall proofs, verifier accepts w.p. $\le \frac{1}{2} + \delta$

Then in any assignment for $T(q)$, can only satisfy all

4 clauses for $\le (\frac{1}{2} + \delta)N$ constraints

\Rightarrow
any assignment for $f(q)$ satisfies $\leq 4(\frac{1}{2} + \epsilon)N + 3(\frac{1}{2} - \epsilon)N = \frac{7}{2} + \epsilon)N$ classes

The trace of $\frac{7 + \epsilon}{4 - \epsilon}N = \frac{7}{6} + \epsilon'$