600.469 / 600.669 Approximation Algorithms

Topic: LPs as Metrics: Min Cut and Multiway Cut

Date: 4/2/15

Lecturer: Michael Dinitz

Scribe: Gabriel Kaptchuk

16.1 Min-Cut as an LP

We recall the basic definition of the MIN CUT PROBLEM

Input: Graph G = (V, E)

Costs $c: E \to \mathbb{R}^+$

Source $s \in V$ and Terminal $t \in T$

Feasible: $A \subseteq E$ s.t. G - A has no s-t path

Objective: $\min \sum_{e \in A} c(e)$

We note that this definition of MIN CUT PROBLEM can be written in an equivalent form

Input: Graph G = (V, E)

Costs $c: E \to \mathbb{R}^+$

Source $s \in V$ and Terminal $t \in T$

Feasible: $S \subseteq V$ s.t. $s \in S$ and $t \notin S$

Objective: $\min \sum_{e \in E(S,\bar{S})} c(e)$

Definition 16.1.1 $P_{s,t} = \{all \ S - T \ paths\}$

We define the following LP, whose integer solutions are solutions to the MIN CUT PROBLEM

$$\min \quad \sum_{e \in E} c(e) x_e$$
 subject to
$$\sum_{e \in p} x_e \ge 1 \quad \forall p \in \mathbf{P}_{s,t}$$

$$0 \le x_e \le 1 \quad \forall e \in E$$

Intuitively, this states that along each path at least one edge must be in the cut.

Theorem 16.1.2 This LP can be solved in polytime, even though it has an exponential number of constraints

Proof: Suppose \vec{x} is not a feasible solution to the LP. There must thus be a path $p \in \mathbf{P}_{s,t}$ s.t. $\sum_{e \in p} x_e < 1$. We now think of x_e as a length assigned to edge $e \in E$. We can easily find a shortest S - T path. Because it is the shortest path, and $\exists p \in \mathbf{P}_{s,t}$ with $\sum_{e \in p} x_e = \sum_{e \in p} \text{length}(e) < 1$, we can use shortest path as a separation oracle for the ellipsoid method.

Theorem 16.1.3 If \vec{x} is a feasible solution to the LP with $cost(\vec{x}) = \sum_{e \in E} c(e)x_e = Z$, then we can find an integral solution with cost Z in polynomial time.

Proof: We begin by defining a few variables.

Definition 16.1.4 Let d(u) denote the shortest path distance from s to u under the edge lengths $x_e \in \vec{x}$.

Definition 16.1.5 *Let* $B(s,r) = \{v \in V | d(v) \le r\}$

Definition 16.1.6 If $S \subset V$, let $\delta(S) = E(S, \bar{S}) = set$ of edges with one endpoint in S and one endpoint in \bar{S}

We note that using the shortest path metric for all given nodes $v \in V$ turns the graph into a metric space.

Algorithm 1 LP rounding for Min Cut

Input: Graph G = (V, E) and solution to the LP \vec{x}

Output: $S \subseteq E$

Choose r uniformly at random in [0,1]

 $S \leftarrow B(s,r)$

return $A \leftarrow \delta(S)$

Claim 16.1.7 Let $e = \{u, v\} \in E$. $Pr[e \in A] \le x_e$

Proof: WLOG let $d(u) \leq d(v)$. For $e \in A$ the radius of the ball B = (s, r) must be enough to contain u, but not v. So, $Pr[e \in A] = Pr[r \in [d(u), d(v)]] \leq d(v) - d(u) \leq d(u, v) \leq x_e$, where d(u, v) denotes the length of the shortest u - v path.

Hence by linearity of expectation, By linearity of expectations, $E[c(A)] = \sum_{e \in E} c(e) Pr[e \in A] = \sum_{e \in E} c(e) x_e = Z$. We can take this seemingly randomized algorithm and make it deterministic by simply trying all possibilities. Suppose $\not\supseteq$ node w such that $d(u) \le d(w) \le d(v)$. Thus any random $r \in [d(u), d(v)]$ will yield the same cut. Thus there are a linear number of possible cuts, which can each be tested in linear time \Rightarrow the entire algorithm can be run in polynomial time.

16.2 Multiway Cut

We define the MULTIWAY CUT PROBLEM.

Input: Graph
$$G = (V, E)$$

Costs $c : E \to \mathbb{R}^+$
 $T = \{s_1, s_2, ..., s_k\} \subseteq V$
Feasible: $A \subseteq E$ s.t. $G - A$ has no $s_i - s_j$ path $\forall i, j \in \{1, 2, ..., k\}$
Objective: $\min \sum_{e \in A} c(e)$

Definition 16.2.1 Let $\mathbf{P}_{u,v} = \{all \ simple \ u - v \ paths\}$

We define the following LP, whose integer solutions are solutions to the Multiway cut problem

$$\min \quad \sum_{e \in E} c(e)x_e$$
 subject to
$$\sum_{e \in p} x_e \ge 1 \quad \forall i, j \in \{1, 2, ..., k\}, \forall p \in \mathbf{P}_{s_i, s_j}$$

$$0 \le x_e \le 1 \qquad \forall e \in E$$

Note that the LP solution \vec{x} induces a metric d on the nodes through the shortest-path distances, and the constraints guarantee that $d(s_i, s_j) \ge 1$ for all $i, j \in [k]$. We use the same separation oracle as in the above MIN CUT PROBLEM example, but simply use it to check for each pair of $\{i, j\}$.

```
Algorithm 2 LP rounding for Multiway Cut
```

```
Input: Graph G = (V, E) and solution to the LP \vec{x}
Output: S \subseteq E
A \leftarrow \emptyset
for all i \in \{1, 2, ..., k\} do
Randomly choose r \in [0, \frac{1}{2}]
A_i \leftarrow \delta(B(s_i, r))
A \leftarrow A \cup A_i
end for
return A
```

Theorem 16.2.2 If \vec{x} is a feasible solution to the LP with $cost(\vec{x}) = \sum_{e \in E} c(e)x_e = Z$, then there is a polynomial time algorithm to find an integral solution $\vec{x'}$ such that $cost(\vec{x'}) \leq 2Z$ which can be trivially reduced to $2(1-\frac{1}{k})Z$.

Proof: We begin by proving a claim

Claim 16.2.3 $\forall e = \{u, v\} \in E, Pr[e \in A] \leq 2x_e$

Proof: Let $w \in V$. By the triangle inequality, $d(s_i, w) + d(w, s_i) \ge d(s_i, s_i) \ge 1$.

Definition 16.2.4 Let $C_i = \{v \in V | d(s_i, v) \leq \frac{1}{2}\}$. Clearly $C_i \cap C_j = \emptyset \ \forall i, j$

Case 1: $u, v \in C_i$ for some $i \in 1, 2, ..., k$. WLOG we assume $d(s_i, u) \leq d(s_i, v)$.

$$Pr[e \in A] = Pr[e \in A_i] = Pr[r \in [d(s_i, u), d(s_i, v)]] = \frac{d(s_i, v) - d(s_i, u)}{\frac{1}{2}} \le 2d(u, v) \le 2x_e$$

Case 2: $u \in C_i$, $v \notin C_i$ and $v \in C_j$ for $i \neq j$

$$Pr[e \in A] \le Pr[e \in A_i] + Pr[e \in A_j] \le Pr[r \in [d(s_i, u), \frac{1}{2}]] + Pr[r \in [d(s_j, v), \frac{1}{2}]] = \frac{\frac{1}{2} - d(s_i, u)}{\frac{1}{2}} + \frac{\frac{1}{2} - d(s_j, u)}{\frac{1}{2}} = 2(1 - d(s_i, u) - d(s_j, v)) \le 2(d(s_i, s_j) - d(s_i, u) - d(s_j, v)) \le 2d(u, v) \le 2x_e$$

So in all cases $Pr[e \in A] \leq 2x_e$.

By linearity of expectations $E[c(A)] = \sum_{e \in E} c(e) Pr[e \in A] \le \sum_{e \in E} c(e) (2x_e) \le 2 \sum_{e \in E} c(e) x_e \le 2Z$. Thus this is a polynomial time algorithm to find a integral solution given a fractional LP solution \vec{x} . In the same way as the previous example, we can test polynomial possibilities in polynomial time.

16.2.1 Integrality Gap

Is our analysis tight? We consider the star with k nodes around the outside connected by a single node v. We choose as our k terminal nodes the outside nodes.

The optimal solution OPT is clearly given by cutting all but one edge. So cost is given by k-1.

The worst case LP solution is given by assigning all edges $\frac{1}{2}$. So cost is given by $\frac{k}{2}$

Thus the gap is given by $\frac{OPT}{LP} = \frac{k-1}{\frac{k}{R}} = 2(1-\frac{1}{k})$. So our analysis is tight.

16.2.2 A better LP

We consider a better solution to the MULTIWAY CUT PROBLEM. The problem itself stays the same. We create pieces $C_1, C_2, ... C_k$ s.t. $s_i \in C_i \ \forall i \in 1, 2, ..., k$ and $C_i \cap C_j = \emptyset$ for $i \neq j$. We define

$$X_u^i = \begin{cases} 1 & u \in C_i \\ 0 & else \end{cases}$$

$$Z_e^i = \left\{ \begin{array}{ll} 1 & e \in \delta(C_i) \\ 0 & else \end{array} \right.$$

We now define an LP using these indicator variables

$$\begin{aligned} & \min \quad \frac{1}{2} \sum_{e \in E} \sum_{i=1}^k c(e) Z_e^i \\ & \text{subject to} \quad \sum_{i=1}^k x_u^i = 1 & \forall u \in V \\ & Z_e^i \geq X_u^i - X_v^i & \forall e = u, v \in E, & \forall i \in 1, 2, ..., k \\ & Z_e^i \geq X_v^i - X_u^i & \forall e = u, v \in E, & \forall i \in 1, 2, ..., k \\ & X_{s_i}^i = 1 & \forall i \in 1, 2, ..., k \\ & 0 \leq X_u^i \leq 1 \\ & 0 \leq Z_e^i \leq 1 \end{aligned}$$

It is straightforward to verify that this is a valid relaxation of the multiway cut problem. We will give a more compact way of writing this LP which makes the connection to metrics clear.

Definition 16.2.5 Let $x, y \in \mathbb{R}^k$ then their ℓ_1 -distance is $||x - y||_1 = \sum_{i=1}^k |x^i - y^i|$ where x^i is the i^{th} coordinate of the vector x.

Definition 16.2.6 Let $\Delta_k = \{x \in \mathbb{R}^k | \sum_{i=1}^k x^i = 1, x^i \geq 0 \ \forall i \}$ where x^i is the i^{th} coordinate of the vector x.

Definition 16.2.7 Let e_i be a vector with a 1 in the i^{th} coordinate and zeros elsewhere

Let $X_u = (X_u^1, X_u^2, ..., X_u^k)$ and $X_v = (X_v^1, X_v^2, ..., X_v^k)$. Note that $Z_e^i = |X_u^i - X_v^i|$ in any optimal LP solution because of the constraints on Z_e^i and because we are minimizing the objective function. So, $||X_u - X_v|| = \sum_{i=1}^k Z_e^i$. Using all these definitions we can rewrite the new LP as follows

$$\min \quad \frac{1}{2} \sum_{e=\{u,v\} \in E} ||X_u - X_v||_1$$
 subject to
$$X_{s_i} = e_i \qquad \forall i \in 1,2,...,k$$

$$X_u \in \Delta_k$$

Using this LP, there exists a rounding that yields a $\frac{3}{2}$ approximation of the problem