$600.469 \ / \ 600.669 \ Approximation \ Algorithms$

Topic: Randomized Rounding: Group Steiner Tree

Date: 3/24/15

Lecturer: Michael Dinitz

Scribe: David Gong

13.1 Group Steiner Tree (GST)

Input: • Graph G = (V, E)

- Edge costs $c_e \ge 0$, $e \in E$
- Root vertex $r \in V$
- K groups g_1, g_2, \ldots, g_k , where each $g_i \subseteq V$

Feasible: Tree T such that $\forall i \in [k], \exists v \in g_i$ such that T has a path between r and v.

Objective: $\min \sum_{e \in T} c_e$

Theorem 13.1.1 GST contains set cover.

Proof of Theorem 13.1.1: Let (U, S) be a set cover instance. Then construct a star with

- Leaf for each $S \in \mathcal{S}$
- Group g_e for each $e \in U$ where $g_e = \{S \in \mathcal{S} \mid e \in S\}$.

Consider a set cover S_1, \ldots, S_k . Then S_1, \ldots, S_k is a GST solution. Conversly, consider a GST solution S_1, \ldots, S_k . Then S_1, \ldots, S_k is a set cover.

Theorem 13.1.2 It is NP-hard to approximate GST better than $\Omega(\log n)$ -hard to approximate GST.

Theorem 13.1.3 [Halperin, Krauthgamer, 2003] $\forall \epsilon > 0$, GST is $\Omega(\log^{2-\epsilon} n)$ -hard to approximate.

Assumptions:

- G is a tree.
- If $v \in g_i$ for any i, then v is a leaf.

Theorem 13.1.4 [Garg, Konjevod, Ravi] There exists an $O(\log n \log k)$ -approximation to GST on trees.

13.1.1 A Linear Program for GST

minimize:
$$\sum_{e \in E} c_e \cdot x_e$$
 (GST-LP) subject to:
$$\sum_{e \in (S,\bar{S})} x_e \ge 1 \quad \forall i \in [k], \ \forall S \subseteq V \text{ such that } r \in S, \ g_i \cap S = \emptyset$$

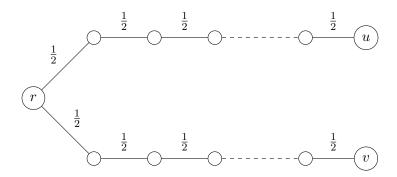
$$0 \le x_e \le 1 \quad \forall e \in E$$

Notice that there are exponential number of constraints. The following method of separation resolves this:

- For each $i \in [k]$, add terminal t_i adjacent to all nodes in g_i with edges of value 1.
- Compute the minimum $r t_i$ cut by using max-flow min-cut.
- If the minimum cut is less than 1, then the violated constraint has been found.
- Otherwise there are no violated constraints.

It is also not hard to see based on max-flow min-cut that this is equivalent to an LP which requires us to send one unit of flow from each r to to t_i (the "fake" terminal adjacent to all of g_i). Then x_e variables then are interpreted as capacities. We will make use of this flow-based interpretation later.

Independent randomized rounding is not appropriate in this problem. Consider the following tree



where there are $\frac{n}{2} - 1$ nodes on both the r - u and r - v paths (not counting r, u, or v). Suppose that $g_1 = \{u, v\}$. Then if we sample each edge independently with probability equal to its LP value,

$$P(\text{connect } u \text{ to } r) = \frac{1}{2^{\frac{n}{2}}}$$

Lemma 13.1.5 Let $e \in E$, p(e) be the parent edge of e (remember that G is a tree). Then in any optimal \vec{x} , $x_{p(e)} \ge x_e$.

13.1.2 Rounding Algorithm

The rounding algorithm presented by [GKR] is as follows

Algorithm 1 GKR Rounding Algorithm for GST

for each x_e do

For each edge e, independently mark e with probability $\frac{x_e}{x_{p(e)}}$. If e is incident on r, then mark e with probability x_e .

end for

Include e if e and all its ancestors are marked.

return T

Lemma 13.1.6 $P[include \ e] = x_e$.

Proof of Lemma 13.1.6: Pick any an edge e and suppose e has i ancestors. Then

$$P[e \text{ included}] = \frac{x_e}{x_{p(e)}} \cdot \frac{x_{p(e)}}{x_{p^2(e)}} \cdot \frac{x_{p^2(e)}}{x_{p^3(e)}} \cdot \dots \cdot \frac{x_{p^{i-1}(e)}}{x_{p^i(e)}} \cdot x_{p^i(e)}$$

$$= x_e.$$

Corollary 13.1.7 $E(ALG) \leq LP$.

Proof of Corollary 13.1.7:

$$\sum_{e \in E} c_e \cdot E[\mathbf{1}_{e \in ALG}] = \sum_{e \in E} c_e \cdot x_e = LP.$$

Claim 13.1.8 Using GKR rounding, $\forall i \in [k]$,

$$P[g_i \ connected \ to \ r] \ge \frac{1}{\log |q_i|} \ge \frac{1}{\log n}.$$

We will first prove that by assuming **Claim 13.1.8**, we can acheive an $O(\log n \log k)$ approximation **Proof:** First, suppose GKR rounding is run $O(\log n \log k)$ times. Now fix some g and notice that

$$\begin{split} P[g \text{ not connected to } r] & \leq \left(1 - \frac{1}{\log|g|}\right)^{O(\log n \log k)} \\ & \leq e^{-\log k} \\ & = \frac{1}{k}. \end{split}$$

Now for each $i \in [k]$, let P_i be the least expensive $r - g_i$ path. Then it is certainly true that $c(P_i) \leq OPT$. Now if g_i is not connected, then add P_i . Then notice that

$$E[\cos t] \le O(\log n \log k) \cdot OPT + \sum_{i=1}^{k} \frac{1}{k} \cdot OPT$$
$$= O(\log n \log k) \cdot OPT.$$

This is to say that adding the shortest paths to the disconnected groups does not significantly hurt us because the probability that a group is disconnected is small.

The rest of these notes will be aimed at setting up the proof of Claim 13.1.8. First we give a lemma that gives the general idea behind the proof. Let us fix some g, then

Definition 13.1.9 Let FAIL be the event that g is not connected to r.

Lemma 13.1.10 If $x'_e \leq x_e \ \forall e \in E$, then

$$P[FAIL \ using \ x'] \ge P[FAIL \ using \ x]$$

Now consider the following construction of x'.

- 1) Remove all leaves not in g and all unecessary edges.
- 2) Reduce x values until minimally feasible (exactly one unit of flow is sent to g).
- 3) Round down to the next power of 2; now the flow is at least $\frac{1}{2}$ because all edges will be at least half of their original value.
- 4) Delete all edges with $x_e \leq \frac{1}{4|g|}$; now the flow is at least

$$\frac{1}{2} - |g| \cdot \frac{1}{4|g|} = \frac{1}{4}.$$

5) If $x_e = x_{p(e)}$, then contract e (since our rounding will include e with probability 1 anyway).

Lemma 13.1.11 The height of the tree is at most $O(\log |g|)$

Proof of Lemma 13.1.11: At each level, x values go down by at least a factor of 2 since we rounded to powers of 2 and contracted edges with the same value as their parent. Because of steps 2 and 4, we know that

$$\frac{1}{4|g|} \le x_e \le 1.$$

Hence the number of levels is at most $\log(4|g|) = O(\log|g|)$.

In order to continue with the introduction of Janson's inequality, we must first set up notation

- \bullet Let S be a ground set.
- Let $p_e \in [0,1]$ for each $e \in S$.
- Let P_1, \ldots, P_k be subsets of S.
- Let S' be the set obtained by adding each $e \in S$ with probability p_e .
- Let \mathcal{E}_i be the event that $P_i \subseteq S'$.
- Let $\mu = \sum_{i=1}^k P[\mathcal{E}_i]$ and $\Delta = \sum_{i \sim j} P[\mathcal{E}_i \cap \mathcal{E}_j]$ where $i \sim j$ if $P_i \cap P_j \neq \emptyset$.

Theorem 13.1.12 (Janson's inequality)

$$P\left[\bigcap_{i} \bar{\mathcal{E}}_{i}\right] \leq e^{-\frac{\mu^{2}}{2\Delta}}.$$

To apply Janson's inquality to the GST setting,

- \bullet S=E.
- P_i = path from r to $v_i \in g$.
- \mathcal{E}_i = event that g is connected to r using v_i .

Claim 13.1.13

$$\mu = \sum_{i} P[\mathcal{E}_i] \ge \frac{1}{4}.$$

Proof: For each $v_i \in G$, the probability of \mathcal{E}_i is, by Lemma 13.1.6, the x value of the edge incident on v_i . This is exactly the amount of flow sent to v_i . Since at least 1/4 flow is sent in total to vertices in $g, \sum_i P[\mathcal{E}_i] \geq 1/4$.

Claim 13.1.14

$$\Delta = O(\log |q|).$$

Proof: We did not have time to cover this in class. A proof can be found in the CMU notes linked to from the course schedule (scribed by Amitabh Basu, now a professor of AMS at JHU). \blacksquare By plugging μ and Δ from the claims into Jansen's inequality, we get that

$$P\left[\bigcap_{i} \bar{\mathcal{E}}_{i}\right] \leq e^{-\frac{1}{\log|g|}} \approx \left(1 - \frac{1}{\log|g|}\right)$$

so the probability of success is at least $\frac{1}{\log |g|}$. This proves **Claim 13.1.8** so the $O(\log n \log k)$ approximation is correct.

References

- HK03 E. Halperin and R. Kruathgamer, Polylogarithmic Inapproximability. *Proceedings of the* 35th Annual ACM Symposium on Theory of Computing (STOC), 585-594, 2003.
- GKR00 N. GARG, G. KONJEVOD, and R. RAVI, A polylogarithmic approximation algorithm for the group Steiner tree problem, SODA~2000.