
Exercise 2 – Due Thursday 9/26 before noon

In last week’s exercise you got hands on experience with actual hardware and some simple sample code.

This week we expand on that by improving the cUartEcho application with printf debugging functionality.

You can use either the original cUartEcho application or your modified version.

A) Embedded programming is often about bridging the gap between hardware and software in the

form of writing device drivers. This means reading data sheets and understanding the special

function registers.

1. In the MSP430F1611 User Guide, read the following pages well enough to complete the

rest of the exercise:

13-1 to 13-4

13-8 to 13-11

13-16 to 13-18

13-21 to 13-30 (cursorily)

2. What values should the registers U1TCTL, U1BR0, U1BR1, U1MCTL be set to in order for

USART1 to run at 115200 baud rate, while using SMCLK as the baud rate clock source

and with BRCLK = 1MHz? Answer with hexadecimal assignments in a text file.

B) printf can be too resource intensive to be deployed in production code. However, for debugging

purposes it can be an invaluable tool.

1. Include stdio.h in the cUartEcho application and insert a printf(“hello world\n\r”) line

before the while-loop. Don’t compile.

2. Since printf is platform independent it requires a platform dependent function to

handle the actual printing of characters. This function:

 int putchar(int character)

is the undefined reference the compiler complained about above.

3. Implement the putchar function using a buffer to hold the characters passed and with a

buffer size that is easily changeable. putchar should return the character it was passed if

the buffer wasn’t full or -1 otherwise.

4. Add the interrupt handler for the UART1TX_VECTOR (the syntax is completely analog to

the UART1RX_VECTOR) and use it to process the buffer, i.e., print the next character in

the buffer when the interrupt fires. Remember to enable the TX interrupt if not already

done and only process the buffer if it is not empty.

5. In the putchar function, make it so that the first character triggers the interrupt enabled

processing of the buffer.

6. Change the UART1RX interrupt service routine (ISR) to use putchar instead of writing

directly to U1TXBUF.

7. Verify your implementation by testing the output of printf, both with strings shorter and

longer than the buffer can hold.

8. Insert comments (a couple of sentences) about the race conditions present and how you

avoid them. Upload the c-file as your answer.

