Image-based Tracking Methods - Applications to Improved Motion Compensation in Cardiac MR and Image-Guided Surgery

by

Maneesh Dewan

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

September, 2007

© Maneesh Dewan 2007

All rights reserved
Abstract

In this dissertation, we present our efforts in developing algorithms in three related areas: 1) unified and optimal tracking, 2) improved motion compensation in cardiovascular MR, and 3) tool tracking in image-guided surgery.

With the rapid advancement in the development of tracking algorithms over the years, the choice of tracking methods for a particular application has significantly increased, but it is generally not clear what is the best algorithm to use. Recently popularized sampling kernels have emerged as a flexible design space for developing and merging various tracking algorithms. We demonstrate a connection between kernel-based algorithms and more traditional template tracking methods. This allows for a more efficient optimization (convergence in fewer steps) and naturally extends to objective functions optimizing more complex motion models using multiple spatially distributed kernels. The efficacy of the multi-kernel methods is demonstrated on a variety of tracking examples. In conventional kernel-based tracking approaches, the kernel parameters are selected in an ad-hoc fashion usually leading to sub-optimal tracking results. Thus, we present results pointing toward the design of optimal and approximately optimal target-specific kernels for tracking. In image-guided robot-assisted eye surgery, the dynamic reconstruction of the surgical field that involves the surgical tools and retinal surface and
features can greatly improve the effectiveness of human-machine cooperative systems that we have been developing in the Johns Hopkins Engineering Research Center. Thus, we extend the multiple kernel ideas to develop a generic algorithm for reliably tracking thin surgical tools in highly textured backgrounds.

Current methods for MR imaging of the cardiac structures, for example coronary arteries and cardiac valves, are limited by the motion artifacts induced by the complex motion of these structures. We present subject-specific motion compensation techniques to improve the speed, quality and reliability of imaging cardiac structures in MR. The underlying principle involves tracking the cardiac structures in motion affected MR images. Thus, we have developed a multiple template-based tracking method to track these cardiac structures reliably and accurately in a range of MR images. Additionally, we have demonstrated the effectiveness and feasibility of the motion compensation approaches for both coronary MR angiography and cardiac valve MR imaging.

Primary Advisor: Professor Gregory D. Hager, Department of Computer Science, Johns Hopkins University

Advisor/Industrial Collaborator: Dr. Christine H. Lorenz, Siemens Corporate Research and Department of Radiology and Radiological Sciences, Johns Hopkins University

Reader: Assistant Professor Noah H. Cowan, Department of Mechanical Engineering, Johns Hopkins University
Acknowledgements

I would like to thank my academic advisor, Professor Gregory Hager for his excellent guidance and support over the last five years. I am extremely grateful to him for giving me the freedom to work on various research problems and teaching me the importance of striking a balance between the nitty-gritty details and the “big picture”. I am also grateful to my co-advisor and industrial collaborator, Dr. Christine Lorenz for being a great mentor over the last three years, from whom I have learned a lot about MR techniques and human physiology. I would also like to thank her for giving me an opportunity to work on an open research problem during my summer internship at Siemens Corporate Research (SCR) three years ago that materialized into my dissertation topic.

I wish to thank Professor Noah Cowan for both, introducing me to the world of sensor-based control and being a reader on my thesis. The class “Sensor based locomotion and manipulation” taught by him has been one of the most enjoyable classes I have taken at Hopkins. I am also grateful to Professor Russell Taylor for giving me the opportunity to TA the “Computer Integrated Surgery” class that really helped me grow as a tutor. I am also thankful to Professor Taylor and Professor Jerry Prince for sitting on my GBO. My thanks also goes to all the other faculty in the Engineering Research Center (ERC) at Hopkins: Allison Okamura, Gabor Fichtinger and Peter Kazanzides for their help and support in the last five years. I am also in-
debted to the ERC and CS Department staff, in particular Luwanna Spells and Debbie DeFord for all their assistance during my stay at Hopkins.

During my PhD, I have been fortunate to be part of the Computational Interaction and Robotics Lab (CIRL) and the ERC at Hopkins, where I have found great collaborators and friends. I am grateful to Dr. Jason Corso for his willingness to discuss research problems and his help in various areas spanning from fixing cameras and code to proof reading papers. I thank Dr. Panadda Marayong for her camaraderie, and eagerness to help in problems; both technical and non-technical. Special thanks to Henry Lin with whom I had the opportunity to develop my teaching skills through intersession courses and the various interesting discussions about career and life. My thanks also goes to other present and alumni CIRL members - Dr. Darius Burschka, Tiffany Chen, Dr. Xiangtian Dai, Ioana Fleming, Dr. Le Lu, Stephen Lee, Dan Mirota, Zachary Pezzementi, Dr. Nicholas Ramey, Carol Reiley, Sharmishtaa Seshamani, Balazs Vagvolgyi, and Dr. Guangqi Ye, for all their help and the good times I have spent here. I also thank the rest of the basement ERC crew - Dr. Emad Boctor, Gouthami Chintalapani, Pezhmann Foroughi, Dr. Ameet Jain, Dr. Ankur Kapoor, Dr. Ming Li, Hassan Rivaz, Sunipa Saha and Siddharth Vikal, for making my stay at Hopkins memorable. I am grateful to the LIMBS lab, especially Vinutha Kallem and John Swensen for sharing their interest in robotics and control. Special thanks to our small DSG group that really helped me survive the thesis writing ordeal.

I would like to extend my warmest thanks to the Siemens Baltimore Group not only for their help and encouragement but also providing me with a temporary desk space in a naturally-lit room. I have been very lucky to work with and learn from both MR scientists and software engineers in the group - Michael Caylus, Dr. Wesley Gilson, Klaus Kirchberg, Corinna Maier,
Glenn Meredith, Dr. Li Pan, and Dr. Steven Shea, to whom I owe my sincere gratitude. I am also thankful to Andreas Greiser and David Mayhew for making the cardiac valve MR imaging project realizable.

I have had the pleasure of enjoying the company of some incredible friends outside of my work, during my stay at Hopkins. The wonderful times spent with Jatin Chhugani, Vikram Krishnaswamy, Mauktik Kulkarni, Mihir Naware, Abhishek Rege, Dheeraj Singaraju, and Pramod Singh Thakur, will always stay in my memories. To this day, it surprises me how they were able to survive my eccentricities; especially, the singing with self-made lyrics, the high-pitched voice and the Indian lentil cooking. My thanks also goes to Harsh Agarwal, Nirveek Bhattacharya, Sachin Chandran, Anoop Deoras, Barun Maskara, Sarthak Mishra, Vaishali Paliwal, Amit Paliwal, Saurav Panda, Neeraja Penumetcha, Anshumal Sinha, and Karthik Vishwanathan for sharing a lot of their time with me.

In the end, I would like to extend my deepest gratitude to my parents and my family in India and US, for their unconditional support throughout my PhD. My cousins Amisha, Amit, Anupama, Kamini, Parag, Poshak, Naully, Raveesh, Ritesh and Tapan have always shown faith in me and have stood by me during the ups and downs of my PhD. Finally, I would like to dedicate the thesis to my parents, Sharda and Surinder Kumar Dewan, without whose constant love, understanding and encouragement, I would not have made it this far.

Maneesh Dewan

Baltimore,

21 September 2007.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Thesis Contributions and Overview</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1 Contributions - Tracking Methods</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2 Contributions - Improved Motion Compensation in Cardiovascular MR</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3 Contributions - Tool Tracking in Image-guided Eye Surgery</td>
<td>13</td>
</tr>
<tr>
<td>2 Tracking Methods</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Kernel-based Tracking</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1 Background</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2 Mean-shift formulation</td>
<td>19</td>
</tr>
<tr>
<td>2.1.3 SSD Formulation</td>
<td>23</td>
</tr>
<tr>
<td>2.1.4 More Complex Motion Models</td>
<td>24</td>
</tr>
<tr>
<td>2.1.5 The Limits of Single Kernels</td>
<td>27</td>
</tr>
<tr>
<td>2.1.6 Extension to Multiple Kernels</td>
<td>28</td>
</tr>
<tr>
<td>2.1.7 The Relationship Between Spatial Structure and Kernel Structure</td>
<td>31</td>
</tr>
<tr>
<td>2.1.8 Multiple Kernel Constructions</td>
<td>32</td>
</tr>
<tr>
<td>2.1.9 Demonstrations</td>
<td>35</td>
</tr>
<tr>
<td>2.1.10 Structured Tracking Example - Tool Tracking for Image-guided Retinal Surgery</td>
<td>39</td>
</tr>
<tr>
<td>2.2 Multiple Template Tracking</td>
<td>44</td>
</tr>
<tr>
<td>2.2.1 Background</td>
<td>44</td>
</tr>
<tr>
<td>2.2.2 Affine-weighted SSD formulation</td>
<td>47</td>
</tr>
<tr>
<td>2.2.3 Extension to Bidirectional Methods</td>
<td>50</td>
</tr>
<tr>
<td>2.2.4 Template Selection</td>
<td>51</td>
</tr>
<tr>
<td>2.3 Conclusions</td>
<td>53</td>
</tr>
</tbody>
</table>
Optimal Kernels

3 Optimal Kernels

Background

3.1 Background

Problem Formulation

3.2 Problem Formulation

Simple One Dimensional Case

3.3 Simple One Dimensional Case

Extension to the Two-Dimensional Case

3.4 Extension to the Two-Dimensional Case

Conclusions

3.5 Conclusions

Beat-to-Beat Motion Compensation for Robust Coronary MR Angiography

4 Beat-to-Beat Motion Compensation for Robust Coronary MR Angiography

Introduction

4.1 Introduction

Previous Work

4.2 Previous Work

Respiratory Motion Variability

4.2.1 Respiratory Motion Variability

Heart Rate and Cardiac Motion Variability

4.2.2 Heart Rate and Cardiac Motion Variability

Proposed Approach - Image-based Navigators

4.3 Proposed Approach - Image-based Navigators

Data Acquisition

4.4 Data Acquisition

Tracking Algorithm and Validation

4.5 Tracking Algorithm and Validation

Heart Rate Variability

4.6 Heart Rate Variability

MR Simulation

4.7 MR Simulation

Comparison of Diaphragm and Coronary Motion

4.8 Comparison of Diaphragm and Coronary Motion

User Interface (UI)

4.9 User Interface (UI)

Initial Testing and Results

4.9.1 Initial Testing and Results

Discussion and Conclusions

4.10 Discussion and Conclusions

Improved Motion Compensation in Cardiac Valve MR Imaging

5 Improved Motion Compensation in Cardiac Valve MR Imaging

Introduction

5.1 Introduction

Previous Work

5.2 Previous Work

Proposed Approach - Valve Imaging with Image-based Tracking

5.3 Proposed Approach - Valve Imaging with Image-based Tracking

Validation and Experiments

5.4 Validation and Experiments

Study I - Tracking Validation

5.4.1 Study I - Tracking Validation

Study II - Valve Imaging Comparison

5.4.2 Study II - Valve Imaging Comparison

Discussion and Conclusions

5.5 Discussion and Conclusions

Conclusions and Future Work

6 Conclusions and Future Work

Tracking Methods

6.1 Tracking Methods

Motion Compensation in Cardiovascular MR

6.2 Motion Compensation in Cardiovascular MR

Tracking in Image-guided Surgery

6.3 Tracking in Image-guided Surgery

Future Directions

6.4 Future Directions

Bibliography

Bibliography

Vita

Vita
List of Figures

1.1 Motion of different objects (book, thin tool and human heart) in images through time. The first two rows are images taken by a conventional camera whereas the bottom two rows are magnetic resonance (MR) images. In a particular row, time increases from left to right. ... 2

1.2 Left circumflex coronary artery and mitral valve motion through the cardiac cycle in the 4-chamber view. The coronary artery is depicted by an orange circle and the valve plane by a green line. ... 5

1.3 Importance of motion compensation in MR. Transverse image taken with (A) no motion compensation, (B) cardiac motion compensation and (C) cardiac and respiratory motion compensation. The images are taken from [14]. ... 6

1.4 Retinal eye surgical procedure. The images were taken from www.uab.edu. ... 7

2.1 Steps involved in building a kernel weighted histogram ... 20

2.2 Return map comparison between mean shift and kernel-based SSD approach. The left plot compares the return map for shift when the target is centered on “box” signal; the right plot the performance when the target is centered on a 1D step function (an “edge”). For kernel-based SSD approach, both epan and triangular kernels [46] have been used. It can be seen that SSD has nearly perfect 1-step performance, whereas mean shift much slower to return.. 25

2.3 A tracking on a bulls-eye figure. .. 27

2.4 The x and y roof kernels. .. 30

2.5 Tracking on a bulls-eye figure with multiple kernels. ... 33

2.6 Different rotation kernels. The top row shows the kernels in (2.28) and the bottom row shows the kernels in (2.29). ... 34

2.7 The center position of the tracked region for mean shift, single-kernel SSD and the multiple-kernel SSD with histogram binning based on HSV space (2 iterations per frame). .. 36

2.8 The center position of the tracked region for mean shift, single-kernel SSD and the multiple-kernel SSD with histogram binning based on both HSV and RGB space (2 iterations per frame). ... 37
2.9 Tracking comparison for mean shift, single-kernel SSD and multiple-kernel SSD approaches with 2 iterations per frame. The first frame shows the selected template region. In the following frames (frame numbers 98, 158, 290, 332, and 413) the tracked region from these different tracking approaches are shown. The tracked region in each frame for mean shift, single-kernel SSD and multiple-kernel SSD with histogram binning based on HSV space are shown in blue, red and green rectangle respectively. The tracked region with histogram binning based on RGB space for mean shift and single-kernel SSD are shown in magenta and black respectively.

2.10 Tracking scale and translation with the multi kernel SSD approach. The first frame shows the selected template region. The subsequent frames i.e. 22, 45, 78, 84 and 98 show the tracked region with a blue rectangle.

2.11 Similarity (translation, scale, and rotation) tracking with the multi kernel SSD approach. The tracked region is shown with a blue rectangle.

2.12 Placement of multiple kernels for tool tracking. The kernel placements are indicated by the rectangular boxes where the tool is outlined by a dotted yellow line.

2.13 Tracking a tool attached to the steady hand robot in the preliminary test-bed for retinal eye surgery [23][24]. This is the left image of a stereo pair. The tracked frames shown in rest of the rows are frame numbers 130,170,210,250,330 and 410.

2.14 Comparison of high resolution cine (left) and realtime low-resolution images (right) in 4-chamber (top row) and short axis views (bottom row). The arrow indicates the location of the left coronary artery. Note that the coronary artery is clearly visible in the high resolution images but blurred out in corresponding real-time images.

2.15 Mitral and aortic valves in high resolution cine (left) and realtime low-resolution images (right) in 4-chamber (top row) and coronal views (bottom row). The overlaid line indicates the valve plane.

2.16 Intuition behind multiple template SSD tracking.

2.17 Optimal Templates selected (enclosed in rectangle) from the manually selected 40 templates.

2.18 Tracking comparison with optimal and non-optimal templates. The templates used for equal-spaced 1 and 2 are (5,20,35) and (1,20,40) respectively.

3.1 Return map comparison between kernel-based SSD [27] and optimal kernels on a step signal (left). The right plot shows the step signal, the estimated optimal kernels (see section 3.3) and epan and roof kernels used for kernel-based SSD. Note that in the kernel-based SSD method, the kernel is placed at the center with the scale equal to the size of the signal.

3.2 Comparison of SSD and optimal kernel methods on an artificial multiple step signal. The top and bottom rows show the results using square and gaussian kernels respectively. A uniform model for \(u\) is used for both kernels.

3.3 Comparison of SSD and optimal kernel methods on a real signal with gaussian kernels. Numerical integration with uniform model for \(u\) is used.

3.4 Comparison of SSD and optimal kernel methods on real signals with square kernels. A gaussian model for \(u\) is used. One can see the approx 1 works as well as the numerical integration.

3.5 Optimization of x-translation kernel \(K_x(x,y)\) in 2D.
3.6 Comparison of SSD and optimal kernel methods on a artificial signal in 2D. The right plot shows the return map in twice the optimized range of \(u \) and \(v \). Optimal kernel - 1D and Optimal kernel - 2D refers to the results using kernels obtained before and after the 2D joint optimization.

3.7 Location selection using heuristics. The left column shows the 10 pairs generated by the heuristics overlaid on the template. The right column shows the return map comparisons.

3.8 Tracking Comparisons between optimal kernels(blue box) and kernel-based SSD [27](magenta box). Frames 20, 35, 50, 100, 200 and 300 are shown in order. The kernel-based SSD tracking fails around frame 40.

3.9 Comparison of rotation and scale estimation with the transformed optimal gaussian kernel and SSD Method on the clown image.

4.1 The primary coronary arteries in the heart.

4.2 Current Approach for coronary MRA.

4.3 Basic sequence-timing diagram of the proposed approach using image-based navigators.

4.4 Process flow in the proposed approach for coronary MRA.

4.5 Subject-specific heart coordinate system. The \(X' \), \(Y' \) and \(Z' \) axes of the heart coordinate system are shown in 4-chamber and short axis views separately in 2D (a) and in 3D (b).

4.6 Sequence diagram of a real-time acquisition in cardiac MR. Images are acquired through time. As the heart is undergoing cardiac and respiratory motion, the time duration of the acquisition of each image is limited therefore the spatial resolution determined by the extent of k-space filled is low.

4.7 Tracked positions of LCX in the 4-chamber (1st row), and LAD in the short axis (2nd row) and coronal (3rd row) views at different points in the cardiac cycle. The box represents the tracked region with the dot representing the estimated location of the coronary artery.

4.8 Tracked positions of RCA in the 4-chamber view at different points in the cardiac cycle. The box represents the tracked region with the dot representing the estimated location of the coronary artery.

4.9 Tracked coronary motion in low resolution real-time images. The top (a) and bottom (b) rows correspond to 4-chamber and short axis views respectively. The left column shows the transformed heart coordinate system (in gray) whereas the right column shows the transformed tracked coronary motion of LCX and RCA in 4-chamber and LDA in short-axis views. The transformed tracked coronary motion plot shows the \(X' \), \(Y' \) and \(Z' \) motions.

4.10 Detected end-systolic and end-diastolic time points in the extracted coronary motion data from a 4-chamber view in a single volunteer over 8 cardiac beats.

4.11 Comparison of tracked coronary motion from breath-hold real-time acquisition (solid) with the motion from high resolution segmented cine acquisition (dashed) in coronal (top left), four chamber (top right) and short axis (bottom) views for a one volunteer (out of the 5). In each plot, the top and bottom subplots correspond to x and y motion respectively. The dashed-dot vertical black line corresponds to the end-systolic time.

4.12 Variability in the diastolic and systolic periods in 5 volunteers. The duration of the exam was approximately 21, 15, 39, 11 and 10 minutes, respectively for the 5 volunteers. The error bars are the standard deviation of each period.

4.13 Flowchart describing the MR simulation analysis.
4.14 Acquisition window selection for adaptive (empty boxes) and fixed (filled boxes) trigger delays for window width of 65 ms. The solid curve shows the x and y motion profiles (in cm). The dotted vertical lines depict the end-systolic time point. The fixed trigger delay acquisition window depicted by the duration between the two filled boxes is calculated from minimum velocity time point in the high resolution cine sequence. The adaptive trigger delay acquisition window depicted by the duration between the two empty boxes is computed on a beat-to-beat basis as the time point corresponding to the minimum velocity point in that cardiac cycle.

4.15 Comparison of adaptive and fixed trigger delays for image acquisition as function of acquisition window (in ms) for the simulation analysis. The left and right column shows the best and worst results in terms of percent gain or loss in SNR of the adaptive delay method over the fixed delay method for a particular acquisition window from the set of 10 runs for all volunteers in all views (see MR simulation section). 5 most representative images out of the 10 are shown. The top and bottom rows in each sub-figure correspond to adaptive and fixed trigger delay case, respectively. Note that the phase encoding and frequency encoding directions are along the column and row of the image respectively. Note that even in the worst case comparison, the adaptive delay method quality is comparable to the fixed delay method, while in the best case comparison, the adaptive delay method shows significantly better image quality as compared to the fixed delay.

4.16 SNR (left column) and CNR (right column) comparison between adaptive (dark gray) and fixed (light gray) trigger delays for different acquisition windows for left (a) and right (b) coronary artery. Each plot is a box and whisker plot in MATLAB (Mathworks Inc.). The box has lines at the lower quartile, median, and upper quartile values. The whiskers (dotted lines) are a function of inter-quartile range. The pluses denote the outliers beyond the whisker range. One can note that as the acquisition window increases, the incremental benefit of an adaptive delay is decreased.

4.17 Comparison of respiratory motion of the lung-diaphragm interface and the LAD coronary artery in a one (out of the 5) volunteer. The top figure shows the location of the LAD and lung-diaphragm interface in the coronal view (dots). The darker and lighter boxes show the tracked region for lung-diaphragm interface and LAD respectively. The bottom plot shows the motion of the 0.6 lung-diaphragm interface (solid black), total coronary motion (solid gray) and the respiratory component of the coronary motion (dashed).

4.18 Comparison of respiratory motion of the lung-diaphragm interface and the LAD coronary artery in a one (out of the 5) volunteer over a much longer duration of time (approx. a minute).

4.19 Root mean squared error between the respiratory motion of the lung-diaphragm interface and the LAD coronary artery for all volunteers.

4.20 Screenshots of the coronary UI. The two screenshots show two (out of the four) toggled views of the UI.

4.21 Screenshots of the online testing with the coronary UI. The top one is on a simple phantom whereas the bottom one is in a volunteer.

5.1 Cardiac valves in the heart. The left image is a slice through the long axis of the heart. The image was taken from www.lifeisnow.com.

5.2 Limitation of conventional cardiac MR valve imaging. The imaging plane (shown in green) is fixed through the cardiac cycle whereas the valve plane (shown in yellow) moves in and out of it.
5.3 Sequence diagram of a cine segmented acquisition. Images throughout the cardiac cycle are acquired. Each image (or its corresponding k-space data) is acquired over multiple heart beats.

5.4 Tagging of the aortic valve plane in the coronal view through the cardiac cycle. The trigger delay time is at the bottom right of every image. The estimated valve plane is shown in solid red line whereas the initial location in the first frame is shown as a dotted red line. Note the fading of the tags towards the end of the cardiac cycle. The image was taken from [131].

5.5 Tagging plane selection for the mitral valve. The tagged plane (shown by the line connecting the two circular markers) was selected basal to the actual valve plane (shown by the shaded slab). The image was taken from [130].

5.6 Basic flow of the valve imaging approach.

5.7 Mitral valve tracking in two orthogonal views in a single volunteer.

5.8 Tracking of the aortic valve in two orthogonal views in a single volunteer.

5.9 Scanner UI task card showing repositioning of the scan planes.

5.10 Tracking of mitral (top two rows) and aortic (bottom two rows) valves in low-resolution real-time images in a two volunteers. Five frames from the 128 frame long sequence for each view are shown. The (first, third) and (second, fourth) rows belong to the same volunteers. The valve plane is depicted with a blue line.

5.11 Valve tracking and its comparison to manual selection in a single volunteer. First and second rows correspond to the mitral valve and aortic valves respectively. The blue and magenta lines correspond to the tracked and manually selected valve planes. The first image in the top row shows the heart coordinate system. The bottom row shows the comparison of motion of the mid-point of both mitral and aortic valves.

5.12 Error between tracked and manually selected locations across all volunteers.

5.13 Magnitude and phase images for aortic (top row) and mitral valve (bottom row) when the corresponding valves are open. The left and right column show magnitude and phase images respectively. The circle denotes the valve location.

5.14 Comparison of the aortic valve visualization between with and without slice tracking. Three frames in the cardiac cycle are shown. The location of the valve is indicated by the green circle. The first, second and third columns correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.

5.15 Mitral valve visualization comparison between with and without slice tracking. Three frames in the cardiac cycle are shown. The location of the valve is indicated by the green circle. The first, second and third columns correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.

5.16 The mean velocity and flow curves for both aortic (top row) and mitral (bottom row) valves. The left and right columns correspond to mean velocity and flow respectively. The blue, green and red curves correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.

5.17 Stoke volume and peak veloctiy comparisons for flow measurements with and without slice tracking. The first and second rows correspond to aortic and mitral valves, whereas the left and right columns correspond to peak velocity and stroke volume respectively. The legend is at the bottom.
List of Tables

4.1 Variability of extracted left coronary motion in low resolution real-time breath-hold images. The table shows the root mean squared (RMS) error (in mm) between the interpolated motion and the mean motion data for all the three views along the corresponding coordinate axes. A pixel in low resolution images correspond to 2.76 - 2.89 mm across all volunteers. ... 96

4.2 Mean total error (in mm) between high resolution and average low resolution real-time tracked motion. The error is computed during the second half of the diastolic period which is defined as the duration between the middle and end points of the diastolic period. ... 98
To my dear parents,

Sharda and Surinder Kumar Dewan,

and their unwavering support.
Chapter 1

Introduction

Motion is ubiquitous in everyday life, from the locomotion of people and automobiles, to the hand movements by a human or a robot to perform either a simple action or a complicated surgery, from the physiological motion of the organs and cells to the flow of blood and other nutrients in the human body. With the recent advancements in the imaging technology over the last decade, it is now possible to acquire images of objects of interest as they move over time. Figure 1.1 shows the motion of different objects captured using different imaging modalities. These imaging advancements have provided us with a unique opportunity to not only study and characterize the motion of objects, but also use that motion information to perform higher level tasks. For example, in the area of surveillance, usually the goal is to detect suspicious activity or an unlikely event based on the motion trajectory of a person or a group of people. In robotics, the motion information of the objects surrounding the robot or the robot itself can be used for controlling the robot to perform a given task or follow a particular path or avoid obstacles. Human hand actions or gestures on the other hand can be used to interact with computers to create smart machines. In medical imaging, diagnostics, and interventions the possibilities are immense. The motion pattern of an organ, for example, the heart can impart information about it’s diseased/healthy state. In interventional procedures, motion/deformation of the diseased target and the location estimate of the
devices/instruments can help in online updating of the surgical plan, thereby improving the accuracy of the procedure. Additionally, knowledge/estimation of the motion pattern of an organ can significantly help improve its own imaging. In general, the imaging technology used and the speed of acquisition depends on a particular application and the task at hand. For example, to image the 4-chamber view of the heart shown in the last row of Figure 1.1 magnetic resonance imaging (MRI) was used and the images were acquired at approximately 15 frames per second. The thin tool in the second row of Figure 1.1 on the other hand was imaged using conventional video camera at 30 frames per second.

Figure 1.1: Motion of different objects (book, thin tool and human heart) in images through time. The first two rows are images taken by a conventional camera whereas the bottom two rows are magnetic resonance (MR) images. In a particular row, time increases from left to right.

The key to all these applications is the ability to track the objects of interest in the images as they move over time. Thus, tracking of visual targets has emerged as a central problem in many
application areas of medical interventions, image-guided surgery, vision-based control, surveillance and human-computer interfaces. Usually in tracking, the target object is assigned consistent labels in the sequence of images, typically the pixels in the image that correspond to the object. Thus, tracking can be loosely thought of as segmenting the object of interest in this sequence of images. Additionally, depending on the application, other information regarding the object pose, area or shape is also provided. A number of factors listed below make tracking a challenging problem:

- Loss of information due to the projection of the 3D world onto a 2D plane
- The ability to track different objects in different imaging modalities
- Image noise, usually due to imaging sensors
- Complex motion, especially in non-rigid or articulated objects
- Partial or full occlusion of objects
- Brightness, contrast or illumination changes
- Requirements of real-time processing

In order to make the tracking problem tractable, assumptions regarding the appearance or motion of the object are made. Most tracking algorithms assume that the object motion is smooth and continuous with no abrupt changes. This restricts the search in the next image frame for the target to only a local neighborhood around the object location in the current frame, thereby reducing the computational cost drastically. If available, the motion model of the object is used, for example, whether the object is undergoing translation, rotation, affine or known non-rigid motion. The appearance, size or shape of the object is also sometimes modeled or stored, referred to as a “template”. Therefore, it is not a surprise that over the last decade, a number of tracking algorithms have been developed depending on the object representation, appearance or motion model, and local optimization search.
algorithms have been designed around tracking features such as homogeneous regions [1], edges [2,3],
corners [3], or spatial patterns in a region [4,5] or their geometric and photometric variations [4,6].
These image-level tracking algorithms are often coupled with an estimator-predictor framework such as
the Kalman filter [7] or particle filter [8]. We discuss the various tracking algorithms in more detail in
the next chapter. It is worth pointing out that the problem of detecting the targets of interest to track is
usually a preprocessing step of tracking. Although, recently algorithms have been proposed that have
used the idea of fast detection for tracking objects in a sequence of images [9,10]. These algorithms have
the advantage of detecting large abrupt motion but suffer from low accuracy, therefore typically these
algorithms are followed by more accurate local approaches.

1.1 Motivation

The primary motivations behind this dissertation work is improved cardiac imaging for heart
disease and increased accuracy in image-guided eye surgery. Diseases that affect the heart and the
cardiovascular system include a number of conditions such as coronary artery disease (CAD), heart arrhyth-
mias, heart valve disease, cardiomyopathy or heart muscle disease etc. Cardiovascular diseases remain
one of the major causes of morbidity and mortality in the United States [11], making noninvasive screen-
ing an important tool for early detection of the disease. Magnetic Resonance Imaging (MRI) is a good
candidate for noninvasive screening as it does not require the use of radiation. Additionally, it provides
high soft tissue contrast without the use of any contrast medium. However, the speed of MR image ac-
quisition is slow, because MRI data is acquired in the spatial-fourier domain (known as the k-space) in
an incremental fashion. The image is then reconstructed by taking the inverse fourier transform of the
k-space data. The extent or range of the acquired k-space data governs the resolution of the reconstructed
image, i.e. the larger the range, the higher the spatial resolution and the more time necessary for data
acquisition. Thus, in MR data acquisition there is a fundamental trade-off between the speed of data
acquisition and image resolution.

Figure 1.2: Left circumflex coronary artery and mitral valve motion through the cardiac cycle in the 4-chamber view. The coronary artery is depicted by an orange circle and the valve plane by a green line.

As a result, data acquisition in cardiovascular MR relies on taking data over multiple heartbeats (known as cine acquisition) either in a breath-hold (subject holding his breath) or during free breathing (see Figure 5.3). Cardiac structures like the coronary arteries and valves undergo complex motion induced by both respiratory and cardiac motion \cite{12,13}. Figure 1.2 shows the motion of the left coronary artery and the mitral valve due to the heart motion in a particular view. The motion of the target being imaged during MR data acquisition affects the resulting image quality by introducing ghost-like artifacts, blur, and by reducing the image contrast. Furthermore, variability in respiratory and cardiac motion cycles within and across patients makes it difficult to gauge and predict the motion of the cardiac structures, and to compensate for that motion during MR imaging. In MR, when the motion of the object being imaged is not known, motion compensation is done by acquiring data at time points where the object is at (or almost at) the same location as shown in the cine acquisition sequence diagram (Figure 5.3). The current state-of-the-art methods thus compensate for cardiac motion by filling the k-space data at the same time point in the cardiac cycle over multiple heart beats. Respiratory motion is accounted for by
acquiring data around end-expiration of the respiratory cycle. Figure 1.3 shows the importance of motion compensation in cardiac MR. Another big advantage of MR imaging is that any plane through the object of interest can be chosen for image acquisition. In cardiac MR, this can be particularly useful for some patients with complicated heart position and geometry limiting the use of other imaging modalities such as echocardiography.

Figure 1.3: Importance of motion compensation in MR. Transverse image taken with (A) no motion compensation, (B) cardiac motion compensation and (C) cardiac and respiratory motion compensation. The images are taken from [14].

We are interested in developing motion compensation algorithms to improve cardiac MR imaging speed, quality, and reliability. In MR coronary angiography, the demands of motion compensation are high as not only high resolution volumetric data needs to be acquired, it has to be acquired during a small quiescent period of the cardiac cycle. Typical imaging times are in the order of minutes, and owing to motion variability, the current imaging methods suffer from robustness and repeatability issues. In order to overcome these limitations, we propose a subject-specific approach to track the coronary artery in high speed, low-resolution MR images, and to use the extracted motion information to “servo” the MR imaging slice to compensate for motion, thereby acquiring the data as if the structure was stationary [15]. On the other hand, cardiac valves and the flow through them can be imaged using a two-dimensional acquisition, thereby reducing the motion compensation load. However, current techniques use a fixed imaging plane, causing the valve to move in and out of it, which can lead to poor visualization and inaccurate
flow measurements. To improve on the current techniques, we propose and implement a slice following approach that extracts motion information by tracking the valve plane in MR images acquired during an initial scan (pre-scan), which can then be used to adaptively re-position the acquisition slice during data acquisition. This allows the imaging plane to coincide with the valve plane throughout the cardiac cycle, thereby improving valve localization and imaging. In each case, the key to success lies in the ability to track the cardiac structures in motion-affected MR images across a spectrum of temporal and spatial resolutions, from low-resolution real-time to high-resolution cine images. Thus, we developed and validated a tracking algorithm for this purpose. Additionally, we have also shown the feasibility and efficacy of the proposed improved motion compensation imaging approaches.

Figure 1.4: Retinal eye surgical procedure. The images were taken from www.uab.edu.

In the scenario of retinal eye surgery, the surgeon requires a great deal of hand-eye coordination and dexterity as the surgery is performed while looking through the microscope at the top and operates down at the eye with long thin instruments (see Figure 1.4). Additionally, manipulation of mi-
cro structures in the eye through the use of thin long tools makes the surgery even more challenging. The force feedback at these micro scales is barely perceptible. All these factors require a great deal of skill on the part of the surgeon to successfully carry out the surgery. Recent work in our Engineering Research Center at Johns Hopkins University has been in developing cooperative systems to enhance the capability of the surgeon [16][17][18][19] through the JHU Steady-Hand Robot [20][21]. The robot allows creation of software constraints, known as “virtual fixtures” [22], to allow the surgeon to not only move freely in preferred directions but also to prevent him from entering into forbidden regions, such as the surface of the retina. The guidance can be further automated and enhanced through the reconstruction of the surgical environment. This would require tracking of the surgical tools and the features on the surface, the retina in this case, which is another basis for the tracking algorithms we have developed. The thin structure of the tool and the dynamic environment makes tracking them challenging. We present an algorithm designed to perform this task reliably. More details regarding the system and the setup that we have developed to simulate and validate the concepts of vision-guided retinal surgery can be found in [23][24].

Along with designing tracking algorithms for the aforementioned applications, we are also interested in developing algorithms towards the eventual goal of generic, unified and optimal tracking. Although, over the years, a plethora of tracking algorithms have been developed, the design and development of tracking algorithms is still relatively ad-hoc. For a given application, it is up to the designer to choose a set of methods that are likely to perform well over the class of expected targets and target dynamics. Thus, the final design is a compromise that works acceptably for all expected targets, but is likely to be sub-optimal on any given target.

Historically, two “extremes” in the spectrum of tracking algorithms are feature and region-based tracking methods. The former is unstructured, and insensitive to the details of target geometry, and is typically solved using either brute force search, or statistical techniques. Region-based tracking,
on the other hand, emphasizes the spatial structure of the target, can recover a rich class of motions, and is typically solved using continuous optimization methods. Recently popularized, kernel-based tracking methods [25,26,27] have been shown to close the gap between these two extremes through the use of kernels, which are continuous functions. These methods combine the intensity values and spatial positions to generate statistical measurements and use continuous optimization methods to bridge the gap. Traditional methods typically use one kernel and the slower gradient-based methods of optimization. For more details and literature review on kernel-based tracking methods, the reader is directed to the next chapter. Although successfully demonstrated on a variety of tracking problems, the kernel-based tracking still has a number of questions unanswered that has driven our tracking work, in particular, in the area of kernel-based tracking:

- Is it possible to use much faster optimization methods while still maintaining the nice statistical properties of the traditional kernel-based methods?
- How does the interaction between the kernel and the image structure affect tracking? What are the set of motions that can/cannot be recovered using kernel-based tracking?
- Is it possible to design kernels pertaining to a particular motion or attribute such as symmetry that needs to be tracked?
- Can the number of kernels be increased to track certain motions or in general to increase the tracking performance?
- How is the notion of optimal tracking defined? Is there a general objective framework to define it?
- The kernel parameters used in kernel-based tracking are chosen in a similar manner, irrespective of the target being tracked, leading to poor tracking in some cases. Therefore, can we select target-specific kernel parameters for tracking optimally?
1.2 Thesis Contributions and Overview

The thesis makes contributions both in the areas of image-based tracking methods and in the areas of cardiovascular MR and image-guided retinal surgery. In the following subsections, we outline the main contributions and present the overview of the thesis.

1.2.1 Contributions - Tracking Methods

1. In the area of kernel-based tracking, we have demonstrated a connection between kernel-based algorithms and more traditional SSD-based template tracking methods, thereby allowing a more efficient optimization (convergence in fewer steps) and with fewer assumptions on the kernel function structure. This new optimization method naturally extends to objective functions optimizing more complex motion models, using multiple spatially distributed kernels. In addition, multiple kernels help increase the measurement space and in general, the structure of the kernel-based tracking. Finally, we have demonstrated the efficacy of the multi-kernel methods on a variety of examples including tracking of both unstructured and structured objects in image sequences.

2. With the goal of tracking cardiac structures in MR, we have developed a robust multiple template-based tracking method to track these cardiac structures reliably and accurately. The algorithm allows for extension to bi-directional gradient optimization that helps improve the range of convergence. In addition, the framework allows for both the selection of optimal templates and the capability of updating them online.

3. Towards the goal of optimal tracking, we have developed a principled approach for developing a tracking algorithm that is optimal in a least square expected sense. The approach is demonstrated for the specific case of kernel-based tracking, where the kernel parameters are optimized to minimize the average squared tracking error. We have shown that this optimization can be performed

 SSD stands for sum of squared differences.
using effective approximations for one-dimensional and two-dimensional cases. In addition, the optimization can be easily generalized to higher-dimensional problems.

We outline the tracking algorithms that we have developed in Chapter 2. Initially, we review the tracking literature and define the tracking problem in a general sense. Then, we present our work on kernel-based SSD tracking. We first re-derive the traditional gradient-based kernel tracking approach and then derive the formulation in the SSD framework, followed by the comparison of the two. The extension to complex motion models is presented next. We then discuss the limits of using single kernels and extend the formulation to multiple kernels. The construction of kernels is presented next, followed by demonstrations on various sequences. In the second section of the chapter, we develop the multiple template-based tracking method. We first derive the formulation for the affine-weighted multiple template SSD formulation, followed by its extension to bidirectional methods. Finally, we present the approach for selecting templates. The tracking of different cardiac structures in a range of MR images is demonstrated in Chapters 4 and 5.

In Chapter 3, we present our efforts towards developing optimal tracking, especially optimal kernel-based tracking. We initially discuss the current methods and their limitation owing to the use of sub-optimal kernels. First, we formulate the general notion of an optimal tracker, which can also be thought of as an estimator. To begin with, we present the kernel parameter optimization for a simple one-dimensional case. The extension to the two dimensional case, rotation and scale is presented next.

1.2.2 Contributions - Improved Motion Compensation in Cardiovascular MR

1. In the domain of coronary MR Angiography, we proposed and presented the feasibility of a subject-specific approach with beat-to-beat motion compensation for imaging the coronary arteries, referred to as “image-based navigators”. It involves acquiring real-time low-resolution images in specific orthogonal orientations, extracting coronary motion from these images and then using
this motion information to guide high-resolution MR image acquisition on a beat-to-beat basis.

More specifically,

- The aforementioned multiple template-based tracking algorithm was validated for tracking the coronary artery in real-time images in 4-chamber, short axis and coronal views in 5 volunteers.

- We show significant variability in the systolic and diastolic periods of the cardiac cycles, during the short time periods typical of cardiac MR imaging.

- Through simulation analysis using human tracked coronary motion data, we demonstrated that accounting for the cardiac variability by adaptively changing the trigger delay for acquisition on a beat-to-beat basis improves overall motion compensation and hence MR image quality evaluated in terms of SNR and CNR values.

- Insufficiency of diaphragm motion tracking for respiratory motion compensation is validated, in agreement with previous studies.

- We have developed a user interface (UI) that allows for testing and validation of the proposed approach without significant modifications to the scanner.

2. For valve imaging, we present a generic image-based tracking approach for improved motion compensation in valve MR imaging. As a first step, the valve planes are tracked in high resolution cine images acquired in orthogonal orientations during a pre-scan. This extracted valve motion is used to adaptively reposition the imaging plane during data acquisition. We validated the multiple-template tracking algorithm for estimating both the mitral and aortic valve planes in 5 volunteers. We have implemented the proposed approach on the MR scanner and demonstrated better visualization of both aortic and mitral valves compared to the conventional fixed plane imaging approach. For volunteers with normal flow, as expected, the flow measurements were not significantly differ-
ent between the two methods.

We present our efforts towards improving coronary imaging in MR in Chapter 4. We start by discussing the current imaging methods and approaches for compensating for cardiac and respiratory motion in coronary MR Angiography. Then, we present the proposed “image-based navigator” approach for motion compensation. In the next few sections, we justify and present the feasibility of the proposed approach using human data in an offline implementation.

In Chapter 5, we target the application of cardiac valve imaging. We discuss the limited previous work done for motion compensation in valve imaging followed by the proposed approach of slice repositioning using image-based tracking. Then, we present two validation studies; first, to show the efficacy of the tracking algorithm to extract valve motion and second, to compare the proposed approach with the conventional approach. Finally, we discuss the results and the ongoing future work.

1.2.3 Contributions - Tool Tracking in Image-guided Eye Surgery

Using the multiple kernel histogram ideas, we have developed a generic tracking algorithm to track thin long tools used in retinal eye surgery. The algorithm, specifically built for vision-based closed-loop guidance in a cooperative manipulation system for retinal eye surgery is easily generalizable for tracking surgical tools and devices in other image-guided surgeries and interventions. We introduce the challenges involved in tool tracking and present the multiple kernel based algorithm for tracking them reliably in Section 2.1.10.
Chapter 2

Tracking Methods

The basic idea behind tracking is to estimate the location of an object or target as it moves through a sequence of images. For example, Figure 1.1 shows the motion of different objects through time in both medical and conventional camera images. Tracking algorithms can be broadly categorized into two categories: feature-based methods and region-based methods. In feature-based methods, interest features such as edges [28], corners or corner-like features [29, 30], scale-invariant features [31], affine-invariant features [32], and active contours [2] are detected in the target region, and then these features are tracked through correspondence in subsequent frames [33, 34, 3, 35]. The object or the target motion is then estimated through the collective motion of these features. In region-based tracking methods, the appearance of the object or the target region being tracked, referred to as a “template”, is stored. The location or motion of the object in the consecutive frames is estimated through an objective function that is defined to choose an area of an image closely matching the appearance of the “template” [4, 5, 36]. Various objective functions such as normalized cross-correlation and sum of squared differences have been used. Under the assumption of small motion between consecutive frames, the optimization process can be carried out efficiently and accurately using a variety of linearization methods [5, 36]. Generally, a parametric motion model such as translation, translation and scale, or affine is chosen based on the
motion of the object being tracked. The stored template or reference region is typically selected from
the initial frame in the sequence, although it could be automatically detected using supervised learning
methods such as neural networks [37], adaptive boosting [10], and support vector machines [38]. In order
to avoid drift and reliably track over long durations or in the presence of large appearance variations, it
is often necessary to update the template based on the appearance in the current image [6]. Within
this paradigm, various approaches have been proposed to handle geometric or illumination changes to
the template using parametric deformation models [4] or view-based representations [39]. The motion
estimated through these methods are usually jittery, therefore in practice to obtain smooth tracking,
usually a filtering framework is incorporated, the two predominant ones being the Kalman filter and its
variations [7][40] or particle filters [8].

More recently in region-based tracking, kernel-based methods [25][27] have become popular
due to their broad range of convergence and their robustness to small local deformations which avoids
the need for complex deformation models. These techniques track a target region that is described as
a spatially-weighted intensity histogram. The weighting is done through a kernel that is a real-valued
piecewise continuous function defined on the location space of the image. These weighted values are
summed over all locations to create a measurement. Tracking then involves shifting the location of the
kernel to minimize an objective function that is usually a metric between the kernel-based measurement at
the current location and a fixed reference measurement. We discuss these kernel-based tracking methods
in more detail in the next section.

Before we proceed, we define the general notion of region-based tracking in a more formal
sense. Consider an image at a particular time t, $I(t) \equiv I(Y, t)$ to be defined on a set of locations $Y =
\{y_i\}_{i=1...N}$, where $y_i \in \mathbb{R}^2$. Here N is the number of pixels in the image. Thus, image at a particular
location y and time point t is a function $I(\cdot, t): \mathbb{R}^2 \rightarrow \mathbb{R}$. Now, let us consider a discrete sequence of
images $I(t) \forall t \in [T_s, \ldots, T_e]$ where $t \in \mathbb{R}^+$ is the time at which the image was acquired, and T_s and T_e are
the beginning and end times of the sequence respectively. Without loss of generality, we can consider $T_s = 1$ and $T_e = T$. Let us assume that we know the location of a target in the first image of the sequence $I(1)$. We refer to this as the “target region” G, which is defined by the pixel locations $X = \{x_i\}_{i=1...n}$ in the image I. As the object of interest undergoes motion, the “target region” in the sequence of images undergoes transformation. Mathematically, this can be written as

$$\tilde{X} = T(X, \tau(t))$$

(2.1)

where \tilde{X} are the pixel locations of the target region in the image at time t, $I(t)$. $T(\cdot)$ is a general transformation that acts on a set of locations X and depends on a set of parameters $\tau(t) \in \mathbb{R}^m$ at time t. Thus, in tracking, the goal is to estimate the transformation parameters $\tau(t) \forall t = [T_s, \ldots, T_e]$ throughout the image sequence.

In this chapter, we present two region-based tracking algorithms and modifications that we have developed for different applications. First, we present our work in the area of kernel-based tracking. We develop a connection between kernel-based algorithms and more traditional template tracking methods, thereby allowing a more efficient optimization (convergence in fewer steps) and making fewer assumptions on the kernel function structure. In addition, this method naturally extends to objective functions for optimizing more complex motion models using multiple spatially distributed kernels. We also show that for a particular motion, the use of multiple kernels can improve the structure of optimization and hence the tracking accuracy. In particular, we extend the multiple kernel ideas to design a general algorithm for tracking structured objects like surgical tools in image-guided surgery. In the second section, we develop a robust multiple template-based tracking method to reliably and accurately track the cardiac structures that undergo significant changes in appearance.
2.1 Kernel-based Tracking

2.1.1 Background

In computer vision, the kernel-based methods were first introduced in 1995 by Cheng [41] for the problem of data clustering. Since then, they have gained significant attention and have been applied to various problems in computer vision. More recently, Comaniciu et al. [42] introduced them to the problem of object tracking, especially to the problems involving change in location. Collins [43] extended it to both location and scale by iteratively optimizing over each dimension. As mentioned earlier, the representation of the object is done in the form of kernel-weighted histograms. These methods used the Bhattacharyya measure [44] as an objective function to compare target and candidate kernel-weighted histograms, and the tracking was achieved by optimizing this objective function using the mean shift algorithm [41, 45]. The experimental results showed the promise of kernel-based tracking methods in a wide range of contexts.

Spatial kernels can be viewed as moment-generators. As these kernels are usually some polynomial functions of location (or an infinite series in the case of gaussian kernels), one can think of the measurement as a collection of moments of the feature space around the kernel center. The kernels used here as a weighting function should not be confused with the notion of kernels in non-parametric density estimation [46]. There has been recent work using kernel based density measurements for tracking [26, 47], although it can be shown that transforming the analysis in the spatial fourier domain is similar to the notion of kernel-based weighting in the spatial domain. Let us consider the joint feature and location space and put a unit impulse at every entry in that joint space and refer to the result as a “joint impulse function”. Now, the kernel density estimation in this joint feature-location space is obtained by convolving the kernel in this joint space with the joint impulse function. As we know, in the fourier domain, convolution becomes multiplication and hence weighting. Note that here the weighting
is done instead by the Fourier transform of the kernel.

Intuitively, the attractiveness of the kernel-based descriptions of the tracking regions come from the fact that they combine descriptions of both intensity values and spatial positions in a way that avoids the need for complex modeling of object shape, appearance or motion. Thus, conceptually they forge a link between statistical measures of similarity (which historically required brute force optimization) with powerful methods from continuous optimization. The underlying assumption in kernel-based tracking is that a statistical summary in terms of a kernel-weighted feature histogram is sufficient to determine location, and is sufficiently insensitive to other motions to be robust. This raises a question as to what motions can and cannot be recovered using kernel-based methods. For example, rotational motion cannot be estimated with traditional kernel-based methods because only rotationally-symmetric kernels have been used. On the other hand, most kernels are not scale-invariant, requiring some apparatus to deal with scaling of the target.

In order to gain an understanding of the performance and performance limitations of traditional kernel-based methods, we propose to use a sum of squared differences (SSD) form of the original Bhattacharyya metric. This allows for a Newton-style minimization procedure on this measure. The structure of this optimization allows explicit study of the limitations in kernel-density tracking. These limitations arise both from the structure of the kernel alone and from interactions between the kernel and the image spatial structure. We also show empirically that the Newton-style formulation is a more efficient optimization than mean shift which is fundamentally a gradient descent algorithm.

This analysis also provides a basis for considering the design of a set of kernel-based trackers based on a particular tracking task. Intuitively, the use of multiple kernels increase the measurement space and, should in theory increase the sensitivity of a kernel-based tracking algorithm. The SSD measure we develop extends naturally to multiple kernels. We show designs for kernels that are tailored to particular types of image motions, including scale and rotation, and to particular types of image intensity
structures, including generic region properties such as symmetry.

2.1.2 Mean-shift formulation

In this section, we first re-derive the mean-shift formulation of kernel-based tracking [42, 25]. Let us consider again the target region defined by pixel locations \(\{ x_i \}_{i=1}^n \) in an image \(I(t) \) with time index \(t \). For each pixel location, there is a feature vector \(f \in \mathcal{F} \) that characterizes the appearance within some neighborhood of that pixel location. Let \(\mathcal{U} = 1 \ldots m \) represent a finite number of feature “bins,” and let \(b : \mathcal{F} \to \mathcal{U} \) denote the “binning” function on features. For simplicity, the expression \(b(x, t) \) will represent the bin of the feature value of location \(x \) in an image with time index \(t \). Let \(K : \mathbb{R}^2 \to \mathbb{R}^+ \) denote a kernel which assigns weights to image locations. The argument to the kernel is usually a normalized pixel coordinate \(\bar{x} = \frac{x - c}{h} \), where \(c \) and \(h \) are the center location and scale of the kernel function respectively. Here, \(c \) and \(h \) can be thought of as the transformation parameters \(\tau \) as mentioned in 2.1. For the analysis in this section, only the location of the kernel center \(c \) undergoes change and the kernel scale \(h \) stays fixed.

With these definitions, a kernel-weighted empirical distribution, or histogram, \(q = (q_1, q_2, \ldots, q_m)^t \) of a target region can be computed as:

\[
q_u = C \sum_{i=1}^{n} K(\bar{x}_i) \delta(b(x_i, t), u) \quad (2.2)
\]

\[
C = \frac{1}{\sum_{i=1}^{n} K(\bar{x}_i)} \quad (2.3)
\]

where \(\delta \) is the Kronecker delta function. Note that the definition of \(C \) implies that \(\sum_{u=1}^{m} q_u = 1 \). Unless otherwise noted, we subsequently consider only kernels that have been suitably normalized so that \(C = 1 \).

Equation (2.2) can be written more compactly by defining, for each feature value \(u \), a corresponding sifting vector \(u \) as \(u_i = u_i(t) = \delta(b(x_i, t), u) \). We can combine these sifting vectors into an \(n \) by \(m \) sifting matrix \(U = [u_1, u_2, \ldots, u_m] \). Similarly, we can define a vector version of the kernel function \(K \).
by $K_i(c) = K(x_i, c)$. With this, we can now rewrite (2.2) in a more concise form:

$$q(c) = U'K(c)$$

(2.4)

Figure 2.1: Steps involved in building a kernel weighted histogram

Figure 2.1 gives an outline of the different steps in building the kernel-based histogram. Now,
as the target region undergoes motion in a subsequent image acquired at time \tilde{t}, with the kernel center at \tilde{c}, the corresponding empirical feature distribution (also referred to as candidate distribution) would be

$$p(\tilde{c}) = p(\tilde{c}, \tilde{t}) = U(\tilde{t})K(\tilde{c})$$ \hspace{0.5cm} (2.5)

It is important to note here that both the kernel function K and the underlying image (and hence the sifting matrix U) change to yield a different feature distribution.

As discussed earlier, the location tracking problem can now be stated as follows: given a model distribution, $q(c)$, and a candidate distribution, $p(\tilde{c})$, find a new location c^* that maximizes the similarity between the candidate distribution evaluated at c^*, $p(c^*)$ and the model distribution $q(c)$. Another alternative is to compute a location c^+ such that it maximizes the similarity between the model distribution evaluated at c^+, $q(c^+)$ and the candidate distribution $p(\tilde{c})$. It is important to note that $|c^+ - c| = |\tilde{c} - c^*|$, and the two problem definitions are equivalent. In the present formulation, we build on the first tracking problem definition which under ideal conditions can be formally written as

$$q(c) = p(c^*)$$ \hspace{0.5cm} (2.6)

There a number of ways one can maximize the similarity between the two distributions to estimate the target location c^*. In [25], the location estimation problem is solved by optimizing the sample estimate of the Bhattacharyya coefficient:

$$\hat{\rho}(c^*) = \hat{\rho}(p(c^*), q(c)) = \sum_{u=1}^{m} \sqrt{p_u(c^*)q_u(c)},$$ \hspace{0.5cm} (2.7)

In the notation developed above, this expression can be written

$$\sum_{u=1}^{m} \sqrt{p(c^*)q(c)} = \sum_{u=1}^{m} \sqrt{p(c)}\sqrt{q(c)} = \sqrt{p(c)} \cdot \sqrt{q(c)},$$

where the square root operator is taken to apply componentwise to the vector argument.

At this point, [25] uses the following additional assumptions on the kernel: 1) $K(x - c) = k(||x - c||^2)$; 2) k is non-negative and non-increasing; 3) k is piecewise differentiable [41]. Under these assumptions, the running time of the algorithm is $O(Nm)$, where N is the number of data points and m is the number of components in the density.

Collins [43] has recently developed a generalization of the mean shift algorithm that does not require non-negativity.
assumptions, the mean shift algorithm is then derived in two steps. The first step is to expand the above
expression in a Taylor series about \(\bar{p}(\bar{c}) \).

\[
\hat{\rho}(p(c^*), q(c)) = \hat{\rho}(p(\bar{c}), q(\bar{c})) + \frac{\partial \hat{\rho}(p(c^*), q(c))}{\partial p(c^*)} \bigg|_{c^* = \bar{c}} (p(c^*) - p(\bar{c}))
\]

\[
= \sum_{u=1}^{m} \left(\sqrt{p_u(\bar{c})q_u(\bar{c})} + \frac{1}{2} \sqrt{\frac{q_u(c)}{p_u(\bar{c})}} (p_u(c^*) - p_u(\bar{c})) \right)
\]

(2.8)

As the first term in the last equation in (2.8) is a constant, the optimization involves maximizing
the last term only. Substituting the equation for the candidate distribution from equation (2.2), we obtain
the following objective function that needs to be maximized.

\[
O(c^*) = \sum_{i=1}^{n} w_i K(x_i - c^*)
\]

(2.9)

\[
w_i = \frac{\sqrt{q_u(c)}}{\sqrt{p_u(\bar{c})}} \delta(b(x_i, t), u)
\]

(2.10)

In the vector notation developed above, this becomes

\[
w = U \left(\frac{\sqrt{q(c)}}{\sqrt{p(c)}} \right)
\]

(2.11)

\[
O(c^*) = w^T K(c^*)
\]

(2.12)

where / is again taken to apply componentwise to the associated vectors.

The optimization problem is then solved by computing the gradient of \(O(c^*) \) and setting it
equal to zero [25]. The final solution takes the form of a weighted mean:

\[
c^* - \bar{c} = \Delta c = \frac{\sum_{i=1}^{n} (x_i - \bar{c}) w_i g(||x_i - \bar{c}||^2)}{\sum_{i=1}^{n} w_i g(||x_i - \bar{c}||^2)}
\]

(2.13)

where \(g(x) = -k'(x) \) and is known as the shadow kernel.

It can be shown that the series of “mean shifts” computed using this rule seeks the mode of the
kernel-weighted distribution of \(w_i \) as a function of kernel location.
2.1.3 SSD Formulation

Now let us consider an alternative measure to maximize similarity between the model and candidate distributions. The objective function is based on the sum of squared differences (SSD) between the two distributions also known as the Matusita metric \[48\]

\[
O_M(c^*) = \| \sqrt{q(c)} - \sqrt{p(c^*)} \|^2. \tag{2.14}
\]

It is well known that the Matusita metric and the Bhattacharyya coefficient in \[2.7\] are related \[48, 44\] by

\[
O(c^*) = 2 - 2\hat{\rho}(c^*) \tag{2.15}
\]

As a result, the minima of \[2.14\] coincide with the maxima of the Bhattacharyya coefficient \[2.7\], and hence we can equivalently work with \[2.14\], which we will refer to subsequently as the SSD error.

We derive a Newton-style iterative procedure to solve this optimization by expanding the expression for \(\sqrt{p(c^*)}\) about \(\tilde{c}\) using Taylor series expansion and dropping higher order terms:

\[
\sqrt{p(c^*)} = \sqrt{p(\tilde{c})} + \frac{1}{2} d(p(\tilde{c}))^{-\frac{1}{2}} U^T J_K (c^* - \tilde{c}) \tag{2.16}
\]

where \(J_K\) is the \(n\) by 2 matrix of the form

\[
J_K = \begin{bmatrix}
\frac{\partial K}{\partial \tilde{c}_1} & \frac{\partial K}{\partial \tilde{c}_2} \\
\frac{\partial K}{\partial \tilde{c}_1} & \frac{\partial K}{\partial \tilde{c}_2} \\
\vdots & \vdots \\
\frac{\partial K}{\partial \tilde{c}_1} & \frac{\partial K}{\partial \tilde{c}_2}
\end{bmatrix}
\]

and \(d(p)\) denotes the matrix with elements of \(p\) on its diagonal.

Thus the objective function in \[2.14\] can now be written in terms of a correction \(\Delta c = c^* - \tilde{c}\) as

\[
O(\Delta c) = \| \sqrt{q(c)} - \sqrt{p(\tilde{c})} - \frac{1}{2} d(p)^{-\frac{1}{2}} U^T J_K \Delta c \|^2 \tag{2.17}
\]

23
Now, provided that the kernel jacobian $J_U = d(p)^{-1/2} U' J_K$ is of column rank 2, the minimum of the objective function \[2.17\] is the solution of the following linear system

$$J_K U d(p)^{-1} U' J_K \Delta c = 2 J_K U d(p)^{-1/2} \left(\sqrt{q(c)} - \sqrt{p(\bar{c})} \right)$$ \hspace{1cm} (2.18)

The linear system optimization in (2.18) attempts to jump directly to the solution in a single step. Figure 2.2 shows a simple example of a return map illustrating this behavior. As with all gradient descent algorithms, the mean shift algorithm presented in the previous section (see section 2.1.2) tends to under perform the Newton style iteration procedure presented here.

2.1.4 More Complex Motion Models

The basic idea of kernel-based estimation can now be easily extended to recover richer models of target motion following the line of development generally used for template tracking \cite{4,5}. Let $f(x, \tau)$ represent a parametric deformation model of a target region characterized by the parameters $\tau = (\tau_1, \tau_2, \ldots, \tau_r)$. The function f is assumed to be differentiable w.r.t to both τ and x. The definition of the kernel function can be extended to include f by defining

$$K(x, \tau) = C_\tau K(f(x, \tau))$$ \hspace{1cm} (2.19)

$$C_\tau = \frac{1}{\sum_i K(f(x, \tau))}$$ \hspace{1cm} (2.20)

Note we have been forced to reintroduce C_τ as non-rigid mappings f may change the effective area under the kernel and thus the kernel will require renormalization. Also, note that the center location of the kernel c is part of the parameters τ. Thus, from now on we will write $K(x, \tau) = K(x, (c, \bar{\tau})) = K(x - c, \bar{\tau})$. With this, the definition of a corresponding vector form $K(c, \bar{\tau})$ exactly parallels the development above, and thus we can now define a kernel-modulated histogram as:

$$q(c, \bar{\tau}) = U' K(c, \bar{\tau})$$ \hspace{1cm} (2.21)

\footnote{A return map is a plot showing the relationship between the estimated and true shift of a signal for a particular estimator.}
Figure 2.2: Return map comparison between mean shift and kernel-based SSD approach. The left plot compares the return map for shift when the target is centered on “box” signal; the right plot the performance when the target is centered on a 1D step function (an “edge”). For kernel-based SSD approach, both epan and triangular kernels [46] have been used. It can be seen that SSD has nearly perfect 1-step performance, whereas mean shift much slower to return.
Again, following the same steps of Taylor series expansion, we see the histogram Jacobian includes a kernel Jacobian that is now an n by r matrix of the general form:

$$J_K = \left[\frac{\partial K}{\partial c_1}, \frac{\partial K}{\partial c_2}, \frac{\partial K}{\partial \bar{\tau}_1}, \frac{\partial K}{\partial \bar{\tau}_2}, \ldots , \frac{\partial K}{\partial \bar{\tau}_{r-2}} \right]$$

For a concrete example, consider the problem of determining the appropriate scaling of the kernel as discussed in [43]. The three parameters of interest are the two translation parameters (c_x, c_y) and one scaling parameter s. It is easy to show that for kernels with $C = 1$, the kernel Jacobian has the general form

$$J_K = \begin{bmatrix} K_x, K_y, (x_x - c_x) \ast K_x + (x_y - c_y) \ast K_y - ((x_x - c_x) \ast K_x + (x_y - c_y) \ast K_y) K^S \end{bmatrix}$$

where $K_x = \frac{\partial K}{\partial c_1}$, $K_y = \frac{\partial K}{\partial c_2}$, $K_S = \frac{\partial K}{\partial s}$, (\cdot) denotes the sum of the elements of the vector argument, and \ast denotes an element wise vector multiplication. The subtraction of the summed derivatives is a direct consequence of the requirement that the kernel remain normalized after scaling. Now, if we add rotation θ as well as a parameter, the kernel jacobian form becomes

$$J_K = \begin{bmatrix} K_x, K_y, K_S, (x_x - c_x) \ast K_x + (x_y - c_y) \ast K_y - ((x_x - c_x) \ast K_x + (x_y - c_y) \ast K_y) K_{\theta} \end{bmatrix}$$

where $K_{\theta} = \frac{\partial K}{\partial \theta}$.

Given a predicted set of model parameters c and $\bar{\tau}$, a correction term $(\Delta c, \Delta \bar{\tau}$ is computed as the solution of the following linear system

$$J_K^T U_d(p)^{-1} U_p J_K \begin{bmatrix} \Delta c \\ \Delta \bar{\tau} \end{bmatrix} = J_K^T U_d(p)^{-1} e \quad (2.22)$$

$$e = \sqrt{q} - \sqrt{p(c, \bar{\tau})} \quad (2.23)$$

The general form and structure of f and the parameters τ has been discussed in-depth in [49] and would like to refer the reader to it.
2.1.5 The Limits of Single Kernels

In this section we will discuss some of the properties of kernel-based tracking using a single kernel. First, note that, as with the mean shift algorithm, histogram bins with zero values must be ignored or otherwise regularized [50] in order for the inverse of $d(p)$ to be well defined. Furthermore, the rank of $J_U = d(p)^{-1} U^T J_K$ can in any case be no larger than $\min(r, m)$ [51], where r and m are the number of transformation parameters and feature bins respectively. In fact, note that the mth value of the histogram is a function of the previous $m - 1$ (due to the constraint that the histogram sums to 1), and it can be easily shown that in the case of symmetric kernels this results in a rank reduction on $U^T J_K$. Additionally, any zero values in the histogram will further lower m.

From this it follows that at least three different features values are necessary to track two degrees of translational freedom, no matter how the feature values are distributed. Moreover, this form of rank deficiency is an inherent limitation on any kernel-based objective function. Alternatively, there could be scenarios where there are local target motions that leave the value of the kernel-weighted histogram unchanged. This rank deficiency implies that these target motions lie in the kernel of J_U.

![Figure 2.3: A tracking on a bulls-eye figure.](image)

To briefly illustrate these ideas, consider the image shown in Figure 2.3. The kernel at a is
ambiguous both because it only spans two colors, and because it lies along a spatial boundary i.e. motion along this spatial boundary will go undetected. The kernel at b, although spanning three colors is still invariant to the motion along the spatial boundary. Now, let us consider the kernel at c, centered on the image. It can be worked out that the kernel-weighted histogram values are at an extremum here i.e. any local motion would cause the histogram values corresponding to the gray and red color to decrease and the value corresponding to the green color to increase. Additionally, interestingly enough, the circular symmetry of the target matches the circular symmetry of the kernel causing the Jacobian J_U to go to zero indicating a complete breakdown of the derivative structure. Thus, not surprisingly, there is no single kernel that can track this target over all sets of 2D translations.

Another possible way to have rank deficiency with an arbitrarily large number of feature values is through appropriate interaction between the image and the kernel structure. In general, the invariance of a kernel to a given motion is analytically equivalent to examining the equation

$$0 = U \frac{\partial K}{\partial \tau_i}$$

for parameter τ_i of a given composition of kernel K and deformation f. If the chosen column vector of partial derivatives of the kernel lies in the null space of the columns of U, then that deformation is unrecoverable and J_U will be rank deficient. This is the kernel-tracking equivalent of the aperture problem. Additionally, other rank deficiencies can result due to linear combinations of local motions that lie in the (column) null space of U.

2.1.6 Extension to Multiple Kernels

As discussed in the previous section, a single kernel, no matter what its structure, is ultimately limited by two factors: 1) dimensionality of the histogram (which in turn may be a function of available image structure), and 2) the interaction between its derivative structure and the spatial structure of the image as it is exposed by the histogram. Thus, the obvious direction to pursue is to somehow increase
the dimensionality of the measurement space, and to simultaneously architect the derivative structure of
the kernel to be sensitive to desired directions of motion.

The recent paper by Collins [43] is in fact a step in this direction, where two kernels (one for
location and one for scale) are employed. We follow a similar approach by placing *multiple* kernels on
the image at locations (and ultimately profiles) that provide independent information on motion.

Consider the following roof kernel

Definition 1. A roof kernel of length \(l \), span \(s \), center \(c \) and normal vector \(n \) is defined as

\[
K_r(x; c, n) = \frac{4}{l s^2} \max(s/2 - |(x - c) \cdot n|, 0).
\]

Intuitively, a roof kernel is simply an extrusion of a triangular kernel. The choice of the roof
kernel above is motivated by the following observation. In 1-D, consider a triangular kernel centered
at a location where the signal changes histogram bins (and thus forms a step edge). In 1-D, the form
\(U^T J K(x) \) computes the scalar convolution of the shadow kernel \(g \) (which is now itself a step edge) with
the underlying binned image at \(x \). It follows that the triangular kernel, in the absence of noise, is the
optimal detector for the step edge in the binned signal when the center of the kernel \(c \) is at the step
edge [28]. Although this discussion is for the one-dimensional case, it is easy to see that a similar
argument can be made in for a two-dimensional roof kernel with orientation \(n \), where \(n \) points along the
local “spatial gradient” of the binned image

Intuitively, two roof kernels oriented in orthogonal directions can provide independent infor-
mation on motion along the normal directions. Two such kernels in \(x \) and \(y \) direction are shown in Figure

2.4

Algebraically, the use of two kernels doubles the dimension of the histogram, and therefore
increases the potential rank of the system. To formalize and generalize these ideas, we proceed as
follows:
Figure 2.4: The x and y roof kernels.

Suppose we adjoin several kernels into an $n \times r$ kernel matrix given as

$$K(\alpha) = [K_1(\alpha_1), K_2(\alpha_2), \ldots, K_r(\alpha_r)]$$

where α_i are the transformation parameters for the i^{th} kernel K_i and $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$, with some constraints over the transformation parameters. The constraints arise as the transformation parameters α_i of these kernels can have similar or overlapping parameter coefficients α_{ij}, where $\alpha_i = (\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{im})$.

For example, two kernels can have similar or different centers c.

Following the development earlier, we can now define matrices that contain the corresponding model and target histograms as $Q = U(t_0)K(\alpha_0)$ and $P(\alpha, t) = U(t)K(\alpha)$. Here, again α_0 is known and the goal is to compute the transformation parameters α. The optimization is then

$$O(\alpha) = \|Q - P(\alpha, t)\|^2$$

(2.24)

where $\|\cdot\|$ now denotes the Frobenius norm.

At this point, it is useful to recall that the Frobenius norm on a matrix is equivalent to the norm of the single column vector constructed by concatenating the columns of the matrix. Let \bar{p} and \bar{q} denote the “stacked” versions of P and Q. By recasting the problem in this form, and performing the
same Taylor series expansion, we have:

\[
e = \sqrt{\bar{p}(\alpha, t)} - \sqrt{\bar{q}}
\]

(2.25)

\[
J_u(\tau) = d(\bar{p})^{-\frac{1}{2}} \begin{bmatrix}
 U^T J_K(\alpha_1) \\
 \vdots \\
 U^T J_K(\alpha_r)
\end{bmatrix}
\]

(2.26)

\[
J_u J_u \triangle \alpha = J_u e
\]

(2.27)

It is important to note that the algebraic structure of the stacked system can be no worse than that of any single kernel, and in general will be much better. This does not imply though that multiple kernels will lead to an improvement in the tracking accuracy/quality. Thus, care and analysis of kernel properties is essential in constructing multi-kernel trackers.

2.1.7 The Relationship Between Spatial Structure and Kernel Structure

Consider a binned image \(B(x) = b(I(x)) \) undergoing deformations \(f \). Let \(x_1, x_2, \ldots x_s \) denote \(s \) image locations in the binned image with local gradient directions \(g_i = (dx_i, dy_i) \) \(i = 1 \ldots s \). Define

\[
J_i = \frac{\partial I(f(x; \tau))}{\partial \tau} \bigg|_{x_i, \tau=0}
\]

\[
J_K = \frac{\partial K(f(x; \tau), c_1)}{\partial \tau} \bigg|_{x_i, \tau=0}
\]
Now, we know maximum rank of U_t and J_K is m and r respectively. Here m is the number of feature bins and r is the number of transformation parameters i.e. length of the τ vector. We know from matrix algebra [51] that for two multiplicative matrices A and B, rank$(AB) \leq \min(\text{rank}(A), \text{rank}(B))$ i.e. matrix multiplication can lead to a rank reduction. Additionally, as discussed in Section 2.1.5, we know m is usually greater than r. Therefore, rank$(U_t J_K) \leq r$. In general, rank$(J_I) = r$, therefore $\text{rank}(J_I) \geq \text{rank}(U_t J_K)$. This analysis is with a single kernel K.

Now, if we use multiple kernels, it is easy to see that one reverse the equation such that $\text{rank}(U_t J_K) \geq \text{rank}(J_I)$. This shows more formally that we can increase the rank structure of the tracking problem through the use of multiple kernels.

2.1.8 Multiple Kernel Constructions

In the previous section, we already motivated one possible multi-kernel construction: the combination of two roof kernels in orthogonal directions to provide location information. In particular, if we return to the simple bulls-eye example in Figure 2.5 it is easy to see that the two x and y directional ramp kernels can now provide two independent measures of x and y translation motion, and thus it is possible to track the target undergoing 2D translation. It is important to note that we still have invariance to rotation, although a kernel that is not centered on the perimeter of the red circle can be added to compute rotation in an implicit manner.

Once we take the step of allowing multiple kernels, there are a number additional possibilities for defining tracking structures. Here we detail a few.

Symmetry Seeking: As currently defined, the goal of kernel-based tracking is to match a fixed kernel-weighted histogram to a time and parameter varying one. An alternative is to match two time and location varying histograms to each other. This is particularly useful in cases where the image itself exhibits some type of symmetry, in which case the trackers will be forced into a symmetric configuration. For example,
two kernels placed on the opposing sides of the bulls-eye figure in Figure 2.3 will automatically array themselves symmetrically about the center.

Fixed Reference: Rather than selecting a sample histogram at a location, an alternative is to choose a fixed reference for some or all values of the kernel-weighted histogram. For example, a uniformly colored foreground object might be forced to have a histogram which is exactly 50% the foreground color (but leaving the remaining distribution unspecified). In this case the kernel would naturally center itself on the occluding contour.

Rotation: Kernels that are responsive to rotation must have changing value along circular lines about the origin. This is true of the roof kernel for a small range of motion. However, it is not hard to design kernels that emphasize this attribute. For example, the simplest kernels that one can use, defined in polar
coordinates \((\theta, r)\) are

\[
K_1(\theta, r) = \theta^2
\]

\[
K_2(\theta, r) = \sin^2(\theta)
\]

where \(\theta\) is the angle from the center of the kernel and \(r < r_{\text{max}}\). Figure 2.6 shows these kernels. Both these kernels have discontinuities and high values at the boundaries, which are undesirable properties. The use of the following kernel overcomes these limitations.

\[
K(\theta, r) = r^2(r_{\text{max}} - r^2) \sin^2(m \theta)
\]

where \(m \in \mathbb{R}\). Two of these kernels with different values of \(m\) are shown in the bottom row of Figure 2.6. Note that \(m\) controls the number of lobes in the kernel.

Figure 2.6: Different rotation kernels. The top row shows the kernels in (2.28) and the bottom row shows the kernels in (2.29).
2.1.9 Demonstrations

Tracking Location

In this section, we compare the tracking results of the kernel-based SSD tracking with the mean shift tracker for translation motion. The kernel-based SSD approach is implemented both using single kernels and multiple kernels. Thus, we compare results from three implementations, namely mean shift, single kernel-based SSD and the multiple kernel-based SSD. The kernel used in the single kernel-based and the mean shift approach is the Epanechnikov kernel used by [25]. For the multi-kernel approach, we use the roof kernel discussed in Section 2.1.6.

The histogram binning for comparison is based on the HSV space. The bins in the model distribution containing less than 10% of full value were ignored in the calculations to enhance stability. The bins in the multi-kernel approach consists of a bin for dark pixels (< 20% of full scale brightness), a bin for unsaturated pixels (< 20% full saturation) and ten equally spaced bins for hue values. All model distributions are computed once on the initializing frame and held fixed for the entire sequence.

As indicated by the return map figure in Section 3.2, the convergence for mean shift is much slower compared to the kernel-based approach, so we compare the tracking results for all the three implementations with fixed number of iterations per frame. The Figure 2.7, Figure 2.8 and Figure 2.9 show the tracking results when only 2 iterations per frame were run and every third frame in the sequence was used. It is quite evident from Figure 2.7 that the mean shift tracker performs quite poorly with HSV based histogram binning. On the other hand, the kernel-based SSD trackers perform quite well. If the number of iterations are increased and fewer frames are dropped, the mean shift tracker gives better results. We found that the mean shift tracker performs better with histogram binning based on RGB space. Figure 2.8 shows the comparison of the mean shift and kernel-based SSD tracking with histogram binning based on both HSV and RGB space. It can be seen that although the mean shift tracker performs better, the kernel-based SSD trackers still outperform the mean shift tracker. Figure
2.9 shows the selected template region in the first frame and five frames from the 450 frame tracked sequence. The kernel-based SSD trackers do a better job of tracking than the mean shift trackers with fixed number of iterations. The fast convergence of kernel-based SSD tracking and slow convergence of the mean shift tracking is thus quite evident.

Figure 2.7: The center position of the tracked region for mean shift, single-kernel SSD and the multiple-kernel SSD with histogram binning based on HSV space (2 iterations per frame).
Figure 2.8: The center position of the tracked region for mean shift, single-kernel SSD and the multiple-kernel SSD with histogram binning based on both HSV and RGB space (2 iterations per frame).
Figure 2.9: Tracking comparison for mean shift, single-kernel SSD and multiple-kernel SSD approaches with 2 iterations per frame. The first frame shows the selected template region. In the following frames (frame numbers 98, 158, 290, 332, and 413) the tracked region from these different tracking approaches are shown. The tracked region in each frame for mean shift, single-kernel SSD and multiple-kernel SSD with histogram binning based on HSV space are shown in blue, red and green rectangle respectively. The tracked region with histogram binning based on RGB space for mean shift and single-kernel SSD are shown in magenta and black respectively.
Tracking Similarities

As discussed earlier in the Section 2.1.6, the power of the multiple-kernel SSD tracking lies in tracking similarities. Different kernels for each similarity namely x translation, y translation, scale and rotation can be used to compute each of these similarities. In Figure 2.10 we show results for tracking an image sequence with primarily translation and scale. Two orthogonal triangular kernels are used for x and y translation and a limited conical kernel is used for scaling. Six frames from a 90 frame sequence are shown. It can be easily seen the scaling changes by more than a factor of 2. Similarly, Figure 2.11 shows the tracking under translation, scale and rotation. The rotational kernel used is the one defined in equation 2.29. Note that, as scale and rotation effects are nonlinear, and the optimization uses linearization, tracking under large changes of both tend to make the tracking unstable.

2.1.10 Structured Tracking Example - Tool Tracking for Image-guided Retinal Surgery

As discussed in Chapter 1, the guidance of the image-guided robot-assisted surgical procedures can be enhanced by dynamically reconstructing the surgical environment. This involves tracking surgical tools, devices and other features. In this section, we present an algorithm that we have developed specifically for the task of tool tracking in our vision-based virtual fixture implementation to simulate the basic concepts in retinal surgery. More details regarding the experimental setup can be found in [23,24]. We wish to note that, although developed for a specific application, the underlying idea is generic and can be easily extended for tracking other structured objects. The challenges involved in tool tracking are primarily due to the thin tool structure. Owing to the thin structure of the tool and changing background structure around it, the conventional region-based tracking methods [4,5] cannot be used for estimating tool motion as the motion from the moving background will also be picked up. Therefore, one natural way to track would be to first segment the tool to remove the background, and then estimate the tool
Figure 2.10: Tracking scale and translation with the multi kernel SSD approach. The first frame shows the selected template region. The subsequent frames i.e. 22, 45, 78, 84 and 98 show the tracked region with a blue rectangle.
Figure 2.11: Similarity (translation, scale, and rotation) tracking with the multi kernel SSD approach. The tracked region is shown with a blue rectangle.
geometry in the segmented image. As discussed in section 2.1.2, the first step in generating kernel-weighted histograms is feature binning (see Figure 2.1), which can be thought of a loose segmentation of the features. The histogram measurements are then generated by weighting these feature segmentation through a kernel. It was also demonstrated that multiple kernels increase the measurement space as well as the structure of tracking and naturally extends towards tracking certain attributes of objects such as symmetry. Thus, using the multiple kernel histogram ideas developed earlier, we have designed a tracker to estimate the tool tip position and orientation. The tool in our preliminary [23, 24] test-bed is a simple mono-colored cylindrical tool. Although designed for a mono-colored tool, the tracking algorithm can be extended easily to multi-colored tools as well.

The histogram space for this problem contains two features - one containing the foreground i.e. the tool and the other containing the background. The HSV binning described previously is used to extract the feature space corresponding to the tool. The remaining region is classified as background. To estimate the tool motion, five kernels are used as shown in Figure 2.12. There are four x-translation kernels placed along the length of the tool and one y-translation kernel at the tool tip. The two symmetrical kernels (shown in blue) on the top are used to estimate the x-translation at the top of the tool whereas the ones on the bottom (shown in green) are used to estimate the x-translation at the tip of the tool. The optimization function used in each case is based on symmetry i.e. the difference between the histogram weighted densities of the two symmetrical kernels should be zero. The results of these trackers are shown by the red and blue (upper and middle) plusses on the tool in Figure 2.13. The y-translation roof kernel orthogonal to the axis of symmetry estimates the y-translation of the tool tip. For this kernel, the histogram-weighted density is set to [0.5, 0.5]. For small changes in angle, the roof kernel trackers on a straight edge are rotation invariant, so location is first tracked using the five roof kernels, and then the orientation of the wand is computed after the tracking cycle by fitting a line though the centerline between the symmetry pairs. This is the blue (or central) line on the tool. Although in principle the
estimation of rotation can be direction combined with translation as detailed in Section 2.1.8. The local invariance of the translation stage to rotation facilitates this simpler solution. Note that the entire solution for location and rotation is also scale invariant. The tracking result in the left camera image over a 400 frame sequence is shown in Figure 2.13.

The 3D reconstruction of the tool geometry can be estimated by tracking the tool similarly in the right camera image. The tracked tip location and orientation in left and right images along with the stereo geometry can then be used to obtain the 3D tool configuration.

Figure 2.12: Placement of multiple kernels for tool tracking. The kernel placements are indicated by the rectangular boxes where the tool is outlined by a dotted yellow line.
2.2 Multiple Template Tracking

2.2.1 Background

In some cases, the object of interest undergoes large unmodelled deformations, thereby rendering single templates or stored reference region insufficient to capture the appearance variation through
the sequence of images. Additionally, kernel-based tracking methods discussed in the previous section, which can handle small local deformations would not work as well. This scenario is particularly relevant in cardiac MR images. The appearance of the cardiac structure and its surrounding region undergoes significant, unpredictable (but repeatable from beat to beat) deformations during the cardiac cycle. Thus as hypothesized, we have seen that a single template deformed using commonly employed parametric models (e.g. affine deformation [5,39,4]) is insufficient to track through an entire cardiac cycle. An alternative is to use multiple templates to capture the appearance variation. One simple way to extend the tracking using multiple templates is to run the conventional template tracking [5,4] with each template and then select the solution that most effectively minimizes the objective function. This approach usually fails in mid-systole and early diastole when both the appearance change and motion are large between frames. Another approach is to compute the appearance of the target using a linear combination of basis images which are either a set of chosen templates, or an orthogonal basis thereof [39].

As discussed in Chapter 1, for motion compensation in cardiovascular MR, an additional challenge is that the tracking algorithm must be able to track the cardiac structures in both high resolution and low resolution images. One of the challenges of tracking in low-resolution, real-time images is that the coronary arteries and the cardiac valves themselves are not visible as shown in Figures 2.14 and 2.15 respectively. Thus, we instead track a region containing the cardiac structure of interest as a substitute for the motion of the structure itself.

When using a multiple template approach, there are two important considerations. First, a large number of templates in a lot of different frames is required to capture the appearance variation. In MR, this is usually done manually which is a time-consuming and error-prone process. A semi-automatic/automatic learning-based algorithm could be used for template selection, but we have found patient-to-patient variability is large and as a result automated selection is not very accurate. Second, it is important to note that if some of the selected templates happen to be geometric transformations of other
Figure 2.14: Comparison of high resolution cine (left) and realtime low-resolution images (right) in 4-chamber (top row) and short axis views (bottom row). The arrow indicates the location of the left coronary artery. Note that the coronary artery is clearly visible in the high resolution images but blurred out in corresponding real-time images.

Figure 2.15: Mitral and aortic valves in high resolution cine (left) and realtime low-resolution images (right) in 4-chamber (top row) and coronal views (bottom row). The overlaid line indicates the valve plane.
selected templates, the algorithm can (and will) compensate for motion using appearance variation. As a result, without careful choice of templates, multiple template tracking can significantly underestimate motion. We return to this point in section 2.2.4.

Therefore, we present a new tracking framework that makes use of multiple templates but avoids the shortcomings mentioned above. This method incorporates two novel features. First, we derive a bi-directional, coordinate-descent optimization that simultaneously computes the location and affine mixture in each image. Second, we present a semi-automated selection method for template selection, which ensures that independent templates are chosen from points where the target undergoes large changes.

In the next few sections, we first formulate the multiple template problem as a constrained optimization, and derive an initial solution. We then show that this solution can be extended to a bi-directional coordinate descent algorithm. Finally, we present a method for template selection to ensure reliable and accurate tracking.

2.2.2 Affine-weighted SSD formulation

Following [39][4], the basic idea behind the tracking approach is to describe the current region of interest or the target as a geometric transformation of an affine combination of a set of templates. For expressing this in a mathematical setting, we use the notation and terminology defined earlier in the chapter. Let $Z_i; i = 1...m$ be the reference templates or target regions selected from a given sequence of images $I_i; i = 1...m$. We express the current target region in terms of the reference templates as

$$G_t = T\left(\sum_{i=1}^{m} w_i Z_i, \tau\right)$$

(2.30)

where w_i is the weight corresponding to template Z_i and τ are the transformation parameters. The transformation T is an operator defined on the locations of the image region s.t. $T(Z_i, \tau) = Z_i(T(x_i, \tau)) \forall x_i \in X$. For example, for a simple translational motion model, one can write $T(Z_i, u) = Z_i(x_i + u) \forall x_i \in X$.
where the transformation parameter \mathbf{u} is the translation vector. In order to make the equation linear in terms of the unknowns w_i and τ, we can rewrite (2.30) as follows

$$\hat{T}(G_t, \tau) = \sum_{i=1}^{m} w_i Z_i$$ \hspace{1cm} (2.31)

where $\hat{T}(.,.) = T^{-1}(.,.)$. It is well known that one can linearize the expression $\hat{T}(G_t, \tau)$ using Taylor series [5, 4] as $\hat{T}(G_t, \tau) = G_t(\hat{T}(x, \tau)) \approx G_t(x) + \frac{\partial G_t(\hat{T}(x, \tau))}{\partial \tau} \bigg|_{\tau = 0} \tau$. This approximation is valid under the assumption that τ is small. In practice, the current template is warped with the parameter value at the previous time step before the optimization step, so effectively one solves for the change in parameter value $\Delta \tau$ [5, 4], which is usually small. Also, the affine linear combination of templates constrains the weights s.t. $\sum_{i=1}^{m} w_i = 1$. Thus the Lagrangian optimization function that needs to be minimized can be written as

$$L(w, \tau, \lambda) = \left\| G_t(x) + D\tau - \sum_{i=1}^{m} w_i Z_i \right\|^2 + \lambda \left(\sum_{i=1}^{m} w_i - 1 \right)$$ \hspace{1cm} (2.32)

where $D = \frac{\partial G_t(\hat{T}(x, \tau))}{\partial \tau} \bigg|_{\tau = 0}$ and λ is the lagrange multiplier. The unknown parameters (w, τ) are solved by taking the partial derivatives of $L(w, \tau, \lambda)$ w.r.t w, τ and λ, and setting them to zero [52]. Note, $w = (w_1, w_2, \ldots, w_m)^T$ is a vector containing all the weights. After this step, followed by a few rearrangements, we obtain

$$(G_t(x) - Z_m + R\alpha)^T Q = 0$$ \hspace{1cm} (2.33)

where $R = [D, Z_m - Z_1, Z_m - Z_2, \ldots, Z_m - Z_{m-1}]$

$$\alpha = (\tau, w_1, w_2, \ldots, w_{m-1})^T$$

$$Q = [D, A - Z_1, A - Z_2, \ldots, A - Z_{m-1}]$$

$$A = \frac{\sum_{i=1}^{m} Z_i}{m}$$

Now, (2.33) can be easily solved to compute α, and hence (τ, w)

$$\alpha = -(Q^T R)^{-1} Q^T (G_t(x) - Z_m)$$ \hspace{1cm} (2.34)
For the solution in \((2.34)\) to exist, the rank of the matrix \(Q^T R\) should be full. The matrix \(Q^T R\) can drop rank under the following two conditions

1. One or more templates are linearly dependent on the remaining templates.
2. If two templates are related by the relation; \(Z_i = Z_j + sD\), for some vector \(s\) and \(i, j \in [1, m]\).

These conditions act as a guideline for selecting the templates (more discussion in section 2.2.4).

Figure 2.16 gives a high-level basic idea behind the multiple template SSD tracking. Consider, the red curve as the continuous path, the target region follows in the high dimensional space with time and the blue circles and lines as the selected non-dependent templates and their transformation space. Thus, it is easy to see that the current target region at any time point in the curve can be obtained through the weighted combination of the transformation space of the templates.

Figure 2.16: Intuition behind multiple template SSD tracking
2.2.3 Extension to Bidirectional Methods

It has been shown that bidirectional gradient methods \([53,54]\) significantly improve the rate of convergence and convergence range of the local optimization. Therefore, in this section, we extend the multiple-template tracking described in section 2.2.2 to a bidirectional formulation. In order to do so, equation (2.30) can be written symmetrically about \(\tau\) as

\[
T(G_t - \tau/2) = T(\sum_{i=1}^{m} w_i Z_i, \tau/2)
\]

(2.35)

Following the steps in section 2.2.2, the Lagrangian optimization function becomes

\[
L(w, \tau, \lambda) = \left\| G_t(x) - D\tau/2 - \sum_{i=1}^{m} w_i (Z_i + DZ_i) \right\|^2 + \lambda \left(\sum_{i=1}^{m} w_i - 1 \right)
\]

(2.36)

where \(D = \left. \frac{\partial G_t(x, \tau)}{\partial \tau} \right|_{\tau=0}\) and \(DZ_i = \left. \frac{\partial Z_i(x, \tau)}{\partial \tau} \right|_{\tau=0}\). Taking partial derivatives of \(L(w, \tau, \lambda)\) w.r.t. \(w, \tau\) and \(\lambda\), and eliminating \(\lambda\), one gets the partial derivatives w.r.t. \(w_i\)'s and \(\tau\) as follows

\[
\frac{\partial L}{\partial w_i} = P^T \left[M - (Z_i + DZ_i) \tau/2 \right], i = 1, \ldots, m - 1 \quad (2.37a)
\]

\[
\frac{\partial L}{\partial \tau} = P^T \left[-D - \sum_{i=1}^{m} w_i DZ_i \right] \quad (2.37b)
\]

where \(M = \frac{\sum_{i=1}^{m} Z_i + DZ_i \tau/2}{m}\) and \(P\) is the given by underbrace in 2.36. It can be noted that the partial derivative w.r.t. \(w_m\) is not required as it is linearly dependent on the other \(m - 1\) partial derivatives w.r.t. \(w_i, i = 1, \ldots, m - 1\). Since the partial derivatives in 2.37 are non-linear in \(w_i\)'s and \(\tau\), the optimization cannot be solved in closed form. Another way of solving the optimization is by iteratively solving each subequation in 2.37 separately by keeping the other variable constant, also known as coordinate descent algorithm [52]. If the other variable is kept constant, the solution now becomes

\[
(w_1, \ldots, w_{m-1})^T = (Q_1^T R_1)^{-1} Q_1^T E_1 \quad (2.38a)
\]

\[
\tau = (J^T J)^{-1} J^T (G_t - \sum_{i=1}^{m} w_i Z_i) \quad (2.38b)
\]
where \(E_1 = G_t - \frac{\tau}{2} D - (Z_m + \frac{\tau}{2} DZ_m) \)

\[
J = D + \sum_{i=1}^{m} DZ_i
\]

and the \(i^{th}\) column of \(R1\) and \(Q1\) are given by

\[
[R1_i] = [Z_i - Z_m + \frac{\tau}{2} (DZ_i - DZ_m)]
\]

\[
[Q1_i] = [M - (Z_i + \frac{\tau}{2} DZ_i)]
\]

One of the limitations of the coordinate descent algorithm is that it can get stuck in local minima if not properly initialized. We initialize the algorithm with the \(\tau\) value obtained from \(2.34\) which is usually a good initialization.

2.2.4 Template Selection

In order to make sure the solution in \(2.34\) and \(2.38\) is non-singular, the following matrix should be well conditioned

\[
N = [Z_1, DZ_1, Z_2, DZ_2, \ldots, Z_m, DZ_m]
\]

(2.39)

where \(DZ_i = \frac{\partial Z_i(T(s, \tau))}{\partial \tau} \bigg|_{\tau=0}\). A large condition number indicates a poor selection of templates indicating that a template is a transformation of some other template or a combination of templates. For the matrix \(Q^T R\), this can also happen when the target region in the current frame is close to one of the two templates. An assumption made here is that the derivative of the current region \(D\) will be close to the linear combination of the derivative of templates. Although, the matrix \(N\) indicates whether a given set of templates would ensure a non-singular solution of the optimization but it does not tell you which templates to select from a given set of templates.

If we take a closer look at the matrix \(N\), the two columns \([Z_i, DZ_i]\) corresponding to a template \(Z_i\) constitute the transformation tangent plane [55] of the template \(Z_i\). It is easy to see that if the tangent

- - -
planes of the selected templates that constitute the matrix N are well separated, the matrix N will be well-conditioned. This notion can be captured by “tangent distance” \cite{55}, that is defined as the minimum distance between the two tangent planes. Thus, to ensure a non-singular solution, one needs to find a set of templates with well separated tangent planes and are a representative set of all the templates. Hence, our algorithm is based on clustering using the tangent distance. We use the spectral clustering method proposed by Ng et. al. \cite{56}. Each entry in the affinity matrix is the tangent distance between the two corresponding templates. The number of clusters is chosen by the user from the eigenvalues of the normalized eigenvector matrix generated from the affinity matrix. The templates that are closest to the cluster mean centers are selected for tracking.

In order to test the algorithm, we ran it on manually selected templates chosen at the left end of the mitral valve in the 4-chamber view. In this case, the number of clusters was chosen to be 3, as the first three eigenvalues of the normalized eigenvector matrix were most significant. Figure 2.17 shows the optimal templates selected at frames 5, 17 and 36. The tracking was performed using these templates. To compare it with a non-optimal choice of templates, the tracking was also run with equally spaced templates at frames (5,20,35) and (1,20,40) respectively. The tracking results are compared in Figure 2.18. The tracking result for optimal templates was found to be visually the best. It is important to note that the manual selection is not ground truth as it is very difficult to select templates with continuous motion. The tracking results for “equal-spaced 1” and optimal templates are close as the templates lie in similar clusters. Another point to note is that in the current formulation, we pick the template closest to the mean as the optimal template in that cluster which might not be the best template corresponding to that cluster. Also, increasing the number of optimal templates can further improve the tracking. Further analysis regarding optimal templates can be found in Section 5.4.1.
2.3 Conclusions

In this chapter, we present two different approaches based on the sum of squared differences (SSD) error and the quasi-newton based optimizations. Both approaches are suitable for tracking targets undergoing local unmodelled deformations. If the deformations are small, the kernel-based approaches are a good choice as they use the statistical descriptions and measures of similarity that avoids the need for complex models. On the other hand, if the deformations are large and unmodelled, multiple templates need to be used to capture the appearance variation.

Specifically in kernel-based tracking, we have demonstrated the SSD formulation of the traditional methods that not only allows for faster convergence but also provides better insights into the
structural limitations of kernels. The faster convergence of the SSD based methods will become a key in applications where a large number of targets need to be tracked simultaneously, for example in area of surveillance or scene analysis. The SSD formulation extends naturally to multiple kernels and more complex motions. The questions regarding optimizing kernels for a particular motion, for example, rotation or how to choose multiple kernels to reduce the overall tracking error, still need to be investigated. We present ideas to address the first question in the next chapter.

The multiple kernel-based tool tracking algorithm opens up new avenues for using multiple kernels for tracking structured objects, for example surgical tools and is easily generalizable to other more realistic tools. Additionally, the ideas developed can be used for tracking tools, devices and needles not only in other surgical procedures but also image-guided interventions.
We have also presented a multiple template approach for tracking objects undergoing large variations in appearance, especially targeted towards tracking cardiac structures in MR images. The approach uses templates instead of an orthogonal basis thereby providing several advantages in terms of their selection and online updating. It also allows for extension to bidirectional gradient methods that allow much larger range of convergence for the local optimization. The algorithm validation for tracking coronary arteries and cardiac valves in a range of MR images in different views is presented in Chapters 4 and 5.
Chapter 3

Optimal Kernels

As discussed in Chapter [1], tracking visual targets has emerged as a central problem in many application areas such as surveillance, vision-based control, and human-computer interfaces. However, despite the ubiquity of the tracking problem, the design and development of tracking algorithms is still relatively ad-hoc. For a given application it is up to the designer to choose a set of methods that are likely to perform well over the entire class of expected targets and target dynamics. Thus, the final design is a compromise that works acceptably for all expected targets, but is likely to be sub-optimal on any given target.

In this chapter, our goal is to develop a more principled design methodology around a notion of optimal tracking. By stating and solving the problem based on objective optimization criteria, we show that it is possible to create target-specific tracking algorithms that can significantly out-perform commonly used “generic” algorithms. The basis for our methods lies in observing that recently developed kernel-based tracking methods [25, 27, 57] can be viewed as a way of flexibly sampling multiple image projections. As discussed in Section [2.1.1], many common image tracking methods can be modeled through the choice of kernel structure, the number and spatial structure of sampling kernels, the choice of image features space to operate on, and form of optimization used to compute location. Thus, spatial
sampling kernels form a basis for developing a large family of tracking algorithms. By making a good choice of sampling kernel form, location and structure, it is possible to achieve robust, accurate tracking for low computational cost.

The remainder of this chapter is structured as follows. In the next section, we briefly review the limitations of the kernel-based tracking algorithms reviewed in the previous chapter. We then state a version of the optimal tracking problem and develop several computationally efficient approximate solutions. These solutions are evaluated on problems of interest and are generalized to more complex problems.

3.1 Background

As discussed in the earlier section 2.1, the kernel-based tracking framework allows multiple kernels and/or multiple image projections to be defined. Comaniciu et. al [25] defined multiple image projections through a binning function into mutually orthogonal binary projections. In this case, the moments then become the fraction of the image region projecting into a particular bin, and the collection forms a spatial image histogram. A single kernel placed at the center of the location space was used for all the bands. Their work was extended by Hager et. al [27] to multiple kernels for tracking complex motions. The idea of using motion specific kernels invariant to other motion parameters was introduced but the kernels were still placed at the center and the same kernels were used for all the bands. The idea of multiple kernels was further extended to articulated motions by [57]. Recent work on image segmentation using kernel-based optimization shows the improvement in matching results by using multiple feature-space projections [58], thereby suggesting use of multiple projections can lead to improved robust tracking results. It is interesting to note that if one places Gaussian kernels with small fixed bandwidth at all the image locations in a target, the result is equivalent to conventional SSD tracking using a Gaussian filter to pre-process the images [4]. Therefore, most kernel methods can be viewed as a special
case of template tracking arrived at by choosing several sampling kernels operating on several image projections coupled through a set of photometric and geometric transformations.

One of the drawbacks of all the current approaches is that usually the same kernel is used for all image projections and the kernel parameters (location and scale) are chosen in an ad-hoc manner. Figure 3.1 highlights the sub-optimality of the current kernel-based SSD method on a simple 1D step signal as compared to that of an optimal kernel (see section 3.3). Using optimal kernels, the estimated shift is very close to the true shift, whereas in the kernel-based SSD case the estimated shift is much lower (approximately by a factor of 2).

It is easy to see if one could optimize the choice of sampling kernels over kernel parameters (e.g. bandwidth), choice of image projection, and choice of kernel location, it may be possible to greatly improve the tracking results and, at the same time, reduce computational cost. More recently, Fan et. al. [59] proposed a gradient based algorithm for optimally placing kernels. The algorithm searches locally for a kernel with a jacobian that has the lowest condition number in the neighborhood of the initialization. They initialize the optimization at a grid or near the points of interest to select multiple kernels with Jacobians of good condition number. They show improved tracking results using multiple optimal kernels. One of the limitation of the method is that the approach is local and initialization dependent. In this section, we present our efforts towards developing a more principled framework for the design of target-specific optimal kernels for tracking. We wish to note that this work is an extension and generalization of the work in [60] that was limited primarily to roof or triangular kernels.

3.2 Problem Formulation

In this section, we define the notion of optimal tracking in the least mean square sense, and show how the problem can be solved to design kernels for tracking a specific target in an image in an

\footnote{Return map is a plot showing the relationship between the estimated and true shift of a signal for a particular estimator}
Figure 3.1: Return map comparison between kernel-based SSD [27] and optimal kernels on a step signal (left). The right plot shows the step signal, the estimated optimal kernels (see section 3.3) and epan and roof kernels used for kernel-based SSD. Note that in the kernel-based SSD method, the kernel is placed at the center with the scale equal to the size of the signal.
optimal or approximately optimal fashion. In the current formulation, we assume that the target region in the image is generated by a simple additive model that is composed of a foreground (target) signal, a background signal and noise signals. We use the notation developed in Chapter 2. Let \(f(x) \) and \(b(x) \) be the foreground and background signals respectively. The foreground signal is generated primarily from the object of interest being tracked whereas the background signal comes from the surrounding objects/scene. So the generated target image at a given time \(t \) can be written as

\[
G(x, \tau(t), t) = f(T(x, \tau(t))) + b(T(x, \tau(t))) + n(x, t) \tag{3.1}
\]

where \(n(x, t) \) is a random additive noise at the location \(x \) at time \(t \) and \(T(x, \tau(t)) \) is a general transformation that acts on a location \(x \) and depends on a set of parameters \(\tau(t) \in \mathbb{R}^m \) at current time \(t \). The noise is a white noise with a Dirac delta autocorrelation function in both space and time. The image at time \(t \) can be written using the same generative model as \(I(y, \tau(t), t) = G(y, \tau(t), t), \forall y \in Y \). In the current formulation, we put no restriction on the number of bands in the image signal i.e. the image can be multi-dimensional.

In the tracking framework, the parameters \(\tau(t) \) which define the motion of the region of interest in image \(I(t) \) need to be estimated. Let \(\hat{\tau}(t) = h(I(y, \tau(j), t), X); j = 1 \ldots (t - 1) \) be a function that estimates the value of the parameters at \(t \). The function \(h \) depends on the current image, the pixel locations of the target region and the history of the parameter values. Since there are many possible ways of estimating the parameters, a criterion is needed to evaluate different estimators.

Clearly, the choice of optimal \(h \) will depend on the characteristics of the target in question, and also the expected range of variation of target motion. Thus, we consider the parameters \(\tau \) to also be modelled as a random variable. For a fixed \(h \), this implies that \(\hat{\tau}(t) \) is now a random variable as it is a function of \(\tau \) and \(n \). We can now state a mean square evaluation criterion as

\[
e = E_{n, \tau} \left(\sum_{i=1}^{m} (\hat{\tau}_i - \tau_i)^2 \right) \tag{3.2}
\]
where e is the mean square error that needs to be minimized and the expectation E is taken over both the random variable τ and the noise n. It is worth noting that this is quite close to the basic form used to derive the Kalman Filter [61]. Indeed, simply linearizing the above form and following the same form of derivation leads to a Kalman filter-like form of a canonical SSD tracking [5] framework.

In this chapter, however, we take a slightly different approach. We consider a particular estimator that uses kernels to weight samples in the target image. The idea behind the estimator can be derived from the conventional tracking framework. Let us define G_r as the image of the target region when the transformation parameters are zero; we will refer to this as the “reference template.” As the background signal in this reference template is zero, it can be written as $G_r(x) = f(T(x, 0)) + n(x) = f(x) + n(x)$. Note that when $\tau = 0$, the transformation has no effect on the location i.e. $T(x, 0) = x$. The target region at a current time t is given by (3.1) with $\tau = \tau(t)$ that needs to estimated. Let $k : \mathbb{R}^2 \rightarrow \mathbb{R}^m$ be a multi-dimensional kernel function composed of multiple single-dimensional kernel functions such that $k = [k_1, k_2, ..., k_m]^T$. Each kernel function $k_i, i = 1...m$ can be thought of as being associated with the i^{th} transformation parameter. The estimator can be derived by minimizing the following sum of squared difference functional

$$\left\| \int_{x \in X} k(x)(G(x, \tau(t)) - G_r(T(x, \hat{\tau}(t)))) \, dx \right\|^2_2 \quad (3.3)$$

where $\|\|$ is the l_2 norm. As with canonical SSD tracking [4, 5], the basic idea here is to estimate the parameters that can transform the reference template to obtain the current target region. Now, using first order Taylor series approximation about $\tau = 0$, the following expression is obtained

$$\left\| \int_{x \in X} k(x)(G(x, \tau(t)) - G_r(x)) \, dx - D * \tau(t) \right\|^2_2 \quad (3.4)$$

where $D = \frac{d}{d\tau(t)} \int_{x \in X} k(x)G_r(T(x, \tau(t))) \, dx \bigg|_{\tau(t)=0}$. Minimizing the functional in (3.4) w.r.t. $\tau(t)$, the estimate of the parameters is given by

$$\hat{\tau} = D^\top \int_{x \in X} k(x)(G(x, \tau(t)) - G_r(x)) \, dx \quad (3.5)$$
where D^\dagger is the pseudo inverse of D. Note that the rank of D has to be at least m for solution in (3.5) to exist. Another assumption that has been made is that $\tau(t)$ is small. As usual, in practice the current template (or reference template) is warped with the parameter value at the previous step $\tau(t-1)$ and the change in parameter value $\Delta \tau = \tau(t) - \tau(t-1)$ is then solved for in (3.5) \cite{4, 5}.

Using the derivatives of the image causes the convergence and hence estimation to be dependent on the local fluctuation of the image gradient structure. If we can instead use the smooth and analytical derivatives of a kernel, the parameters of the kernel can be chosen in such a way to yield better convergence properties. In order to do this, a change of integration variables to $y = T(x, \tau(t))$ is done to move the geometric transformation onto the kernel. Doing so, the D matrix then becomes

$$D = \frac{d}{d\tau(t)} \int_{y \in Y} k(T^{-1}(y, \tau(t)))G_r(y) \left| \frac{\partial T^{-1}}{\partial x} \right| dy \bigg|_{\tau(t) = 0}$$

(3.6)

where $Y = T(x, \tau(t)) \forall x \in X$. Substituting (3.5) in (3.2), we obtain the final expression that should be minimized

$$e = E_n, \tau \left(\left\| D^\dagger \int_{x \in X} k(x)(G(x, \tau(t)) - G_r(x)) dx - \tau \right\|^2 \right)$$

(3.7)

In this form, we can now view the choice of kernel k as a free parameter that can be optimized to reduce this error.

3.3 Simple One Dimensional Case

Let us consider a simple one dimensional signal and a single unknown location parameter u. The transformation T is:

$$T(x) = x - u$$

(3.8)

Substituting into equation (3.1), we have

$$g(x, u) = f(x - u) + b(x - u) + n(x)$$

(3.9)
Let the target region $X = [c, d]$ ($c < d$). The estimator (3.5) becomes

$$
\hat{u} = D^{-1} \int_c^d K(x)(g(x, u) - g_r(x)) \, dx
$$

(3.10)

where $g_r(x) = f(x) + n(x)$ and D is now given by

$$
D = \frac{d}{du} \left. \int_{c-u}^{d-u} k(x+u)f(x) \, dx \right|_{u=0}
= \int_c^d k'(x)f(x) \, dx - k(d)f(d) + k(c)f(c)
$$

(3.11)

where $k'(x) = \frac{d}{dx}k(x)$.

Now, to obtain the optimal kernel, (3.7) is minimized to get

$$
e = E_{n,u} \left[\left(D^{-1} \int_c^d k(x)(f(x-u) - f(x) + b(x-u) + \tilde{n}(x)) \, dx - u \right)^2 \right]
= E_{n,u} \left[(e_f + e_b + e_n)^2 \right]
$$

(3.12)

where

$$
e_f = D^{-1} \int_c^d k(x)(f(x-u) - f(x)) \, dx - u
$$

(3.13a)

$$
e_b = D^{-1} \int_c^d k(x)b(x-u) \, dx
$$

(3.13b)

$$
e_n = D^{-1} \int_c^d k(x)\tilde{n}(x) \, dx
$$

(3.13c)

where \tilde{n} is the difference between the noise random variables in the current target image and the reference template. In the current formulation we consider n to be a zero mean normal random variable $\mathcal{N}(0, \sigma_n)$. The distribution for \tilde{n} is then given by $\mathcal{N}(0, \sqrt{2}\sigma_n)$. We assume independence between u and n i.e. $p(n, u) = p(n)p(u)$ where $p(n)$ and $p(u)$ are p.d.f’s for n and u random variables and $p(n, u)$ is their joint density. This leads to the vanishing of the following cross term

$$
E_{n,u} [(e_f + e_b)e_n] = 0
$$

(3.14)

as $E[\tilde{n}] = 0$. Thus (3.12) becomes

63
\[e = E_{n,u} \left[(e_f + e_b)^2 + e_n^2 \right] \] (3.15)

Now, let us consider the error term \(e_n^2 \). The expectation is only taken over \(n \) as \(e_n^2 \) is independent of \(u \).

\[
E_{n,u}[e_n^2] = E_{n,u} \left[D^{-2} \int_c^d k(x) \tilde{n}(x) \, dx \int_c^d k(x') \tilde{n}(x') \, dx' \right]
= D^{-2} \int_c^d \int_c^d k(x) k(x') E_n[\tilde{n}(x) \tilde{n}(x')] \, dx \, dx'
= 2D^{-2} \sigma_n^2 \int_c^d k^2(x) \, dx
\] (3.16)

The last equality in (3.16) holds because \(E_n[\tilde{n}(x) \tilde{n}(x')] = 2\sigma_n^2 \delta(x-x') \) where \(\delta \) is the dirac delta function.

The remaining term in (3.15) can be written as

\[
E_{n,u} \left[(e_f + e_b)^2 \right] = E_u \left[D^{-2} \left(\int_c^d k(x) (f(x - u) - f(x) + b(x - u)) \, dx - u \right)^2 \right]
\] (3.17)

This expression can be easily numerically integrated by artificially shifting the signal to generate \(f(x - u) + b(x - u) \) for different \(u \)’s. It is also possible to approximate the expression in (3.17) through a change of coordinates as in (3.6), linearizing \(k(x) \) upto second order and neglecting the cross terms. Depending on how the integration outside the range \(x \in [c, d] \) is treated, different approximations can be obtained.

For example, using the trapezoidal rule for integration, the following expression is obtained

\[
E_{n,u} \left[(e_f + e_b)^2 \right] \approx \frac{1}{4} D^{-2} \left\{ e_f^2 E[u^2] + (e_f^4 + e_f^2)^2 E[u^4] \right. \\
+ \frac{1}{4} e_f^2 E[u^6] - k(c)k(d) E \left[u^2 s(c - u) s(d - u) \right] \\
+ \left. k^2(c) E \left[(u s(c - u))^2 \right] + k^2(d) E \left[(u s(d - u))^2 \right] \right\} \] (3.18)

The rectangular rule results in a much simpler expression:

\[
E_{n,u} \left[(e_f + e_b)^2 \right] \approx D^{-2} \left\{ \left(\frac{1}{2} e_f^4 + e_f^2 \right)^2 E[u^4] \right. \\
+ \left. \frac{1}{4} e_f^2 E[u^6] \right\}
\] (3.19)
where

\[e_{f1} = k(d)f(d) - k(c)f(c) \]
\[e_{f2} = k'(c)f(c) - k'(d)f(d) \]
\[e_{f3} = k''(c)f(c) - k''(d)f(d) \]
\[e_{f4} = \int_c^d k''(x)f(x) \, dx \]

and \(k''(x) = \frac{d^2}{dx^2}k(x) \). The expectation in the last two terms in (3.18) can be computed offline from the background and foreground signals. Subsequently, we will refer to (3.18) as "approx 1" and (3.19) as "approx 2".

To make the problem tractable, we restrict ourselves to two parametric families of normalized kernels, namely square and gaussian kernels. We define

\[k_s(x) = \begin{cases}
0 & \text{if } \frac{x - \mu_s}{\sigma_s} > 1 \\
\frac{3}{4\sigma_s} \left(1 - \left(\frac{x - \mu_s}{\sigma_s}\right)^2\right) & \text{otherwise}
\end{cases} \]

\[k_g(x) = \frac{1}{\sqrt{2\pi}\sigma_g} \exp \left(-\frac{(x - \mu_g)^2}{2\sigma_g^2}\right) \]

where \(k_s(x) \) is a normalized square kernel with parameters \(\mu_s, \sigma_s \) and \(k_g(x) \) is a normalized gaussian kernel with parameters \(\mu_g, \sigma_g \). Now, the problem becomes one of finding these parameters such that (3.15) is minimized. This can be done by numerical integration by subsituting (3.16) and (3.17) in (3.15). As the numerical integration is more computationally expensive, (3.18) or (3.19) can be used to obtain an approximate solution. For all optimizations in the paper, we use the matlab optimization toolbox function \texttt{fmincon} and the parameters are limited between 1 and \(b - a \), the length of the reference signal. With good initialization, the time for this optimization is on the order of a minute.

In order to fully instantiate the model, we must choose a distributional form for the random
variable u representing the target motion variability. Throughout this paper, we consider the solutions with both uniform and normal distributions for u.

We can now apply the optimization process to a multi-step synthetic signal as shown in Figure 3.2 under a uniform motion model. The various forms of optimization have been carried out and the optimal kernels obtained are shown overlaid with the synthetic reference signal in the left column of the figures. The performance is evaluated by computing a return map. As mentioned earlier, it is a plot showing the relationship between the estimated and true shift of a signal for a particular estimator. In the current experiments, noise was added to the shifted signal and it was 5% of the mean of the reference signal. One thing to note here is that the approximations derived above work well for square kernels but converge to a very small kernel in the gaussian case. One of the reasons this happens is due to the fact that approximations are restricted to second order derivatives whereas the gaussian kernel has derivatives of infinite order. In the case of gaussian kernels, the numerical integration can still be used to obtain optimal kernels at the expense of a little more computation. The optimal kernel method is compared to the SSD method with different smoothing gaussian kernels. It is easy to see the improved performance of optimal kernels over the SSD methods which tend to diverge with increasing variance of smoothing kernels.

The improved performance of the optimal kernels is also obtained for real 1D signals shown in Figure 3.3 and 3.4. An important point to note here is that since we are optimizing the kernel parameters using local optimization methods, the solution is dependent on initialization. The results presented here were initialized by sparsely sampling the parameter space and choosing the minimum value.

3.4 Extension to the Two-Dimensional Case

As the number of transformation parameters increase, brute-force optimization over all kernel parameters simultaneously becomes unattractive due to both increased computational complexity and
Figure 3.2: Comparison of SSD and optimal kernel methods on an artificial multiple step signal. The top and bottom rows show the results using square and gaussian kernels respectively. A uniform model for u is used for both kernels.

Figure 3.3: Comparison of SSD and optimal kernel methods on a real signal with gaussian kernels. Numerical integration with uniform model for u is used.
Figure 3.4: Comparison of SSD and optimal kernel methods on real signals with square kernels. A gaussian model for u is used. One can see the approx 1 works as well as the numerical integration.
the presence of many local minimums. Also, it is difficult to obtain any reasonable approximations using the methods applied to the one-dimensional case. The question we would like to ask is: Can we decouple the optimization in (3.7) for the two-dimensional case into two one-dimensional optimizations and then use the results derived in the one-dimensional case for optimizing kernels in two-dimensions? Reducing the problem into one-dimension avoids a large number of local minimums apart from making the optimization faster. Also, simple 1D approximations can be applied to reduce the computation time. Another advantage is that the two-dimensional optimization can be initialized with the solutions obtained from one-dimensional optimization to further fine tune the solution. In this section, we discuss the optimization in the two-dimensional case based on the ideas developed in [60].

To be more specific, let us consider the two-dimensional case where the transformation \(T \) is given by

\[
T(x, (u, v)) = [x - u, y - v]^T
\]

where \(x = (x, y) \) and \((u, v) \) are the transformation parameters. Let \(X = \{(c_x \leq x \leq d_x), (c_y \leq y \leq d_y)\} \) be the target region. The image generation equation (3.1) becomes

\[
g((x, y), (u, v)) = f(x - u, y - v) + b(x - u, y - v) + n(x, y)
\]

As presented in [60], the basic idea involves decoupling (3.5) to optimize kernels for the transformation parameters \(u \) and \(v \) independently. Let us define \(K_x(x, y) \) and \(K_y(x, y) \) to be kernels optimizing \(u \) and \(v \) respectively. If we consider these kernels to be composed of separable kernels s.t. \(K_x(x, y) = k_{xx}(x)k_{xy}(y) \) and \(K_y(x, y) = k_{yx}(x)k_{yy}(y) \), then the individual de-coupled transformation estimation equations can be defined as

\[
\hat{u} = D_x^{-1} \int_{c_x}^{d_x} k_{xx}(x)[g_x(x) - f_x(x)] \, dx \tag{3.21a}
\]

\[
\hat{v} = D_y^{-1} \int_{c_y}^{d_y} k_{yy}(y)[g_y(y) - f_y(y)] \, dy \tag{3.21b}
\]
where

\[
g_x = \int_{c_x}^{d_x} k_{xy}(y) g((x,y),(u,v)) \, dy \quad (3.22a)
\]

\[
f_x = \int_{c_x}^{d_x} k_{xy}(y) f(x,y) \, dy \quad (3.22b)
\]

\[
D_x = \left. \frac{d}{du} \int_{c_x}^{d_x} k_{xx}(x+u) f_x(x) \, dx \right|_{u=0} \quad (3.22c)
\]

and

\[
g_y = \int_{c_y}^{d_y} k_{yx}(x) g((x,y),(u,v)) \, dx \quad (3.23a)
\]

\[
f_y = \int_{c_y}^{d_y} k_{yx}(x) f(x,y) \, dx \quad (3.23b)
\]

\[
D_y = \left. \frac{d}{dv} \int_{c_y}^{d_y} k_{yy}(y+v) f_y(y) \, dy \right|_{v=0} \quad (3.23c)
\]

The simple trick used here is that kernels \(k_{xy}(y) \) and \(k_{yx}(x) \) project both the current target \(g((x,y),(u,v)) \) and reference target \(f(x,y) \) into one dimensional signals that depends on either \(x \) or \(y \), depending on the kernel being used. Now, given \(k_{xy}(y) \) and \(k_{yx}(x) \), optimal \(k_{xx}(x) \) and \(k_{yy}(y) \) can be easily computed using the methods developed in the section 3.3. One of the drawbacks in the current form is that the performance of the estimators (3.21a) and (3.21b) will be affected by the other transformation parameter \(v \) and \(u \) respectively. To reduce this effect, we take the following approach. For simplicity, the approach is explained through the estimation of \(K_x(x,y) \) and a similar procedure can be followed for estimating \(K_y(x,y) \). One way to reduce the effect of \(v \) on the estimation of \(k_{xx}(x) \) is to optimize the parameters for \(k_{xy}(y) \) such that (3.21a) becomes invariant to \(v \). By invariance here we mean that the transformation \(v \) should not affect the estimation in parameter \(u \). This can be done by numerical integration as discussed in section 3.3. Thus, as shown in Figure 3.5 the estimation of \(K_x(x,y) \) becomes a two-step iterative optimization.

1. Depending on the kernel choice, initialize the parameters of \(k_{xx}(x) \) and \(k_{xy}(y) \) to reasonable values.

The initialization of the center of the kernels will be discussed later.
2. Keeping the parameters of \(k_{xy}(y) \) fixed, optimize over the parameters for \(k_{xx}(x) \).

3. Now, keeping the parameters of \(k_{xx}(x) \) fixed, optimize over the parameters for \(k_{xy}(y) \).

4. Iterate until convergence.

This two-step iterative optimization converges to a local minimum. One can then further fine tune the solution by locally optimizing the complete form of (3.7) including all parameters. Similarly, the parameters for \(K_y(x,y) \) can be obtained.

Figure 3.5: Optimization of x-translation kernel \(K_x(x,y) \) in 2D.

For the results presented in the two-dimensional case, the \(\mu \) (location) parameter for the kernels is fixed throughout the optimization and the optimization is performed over the \(\sigma \) (scale) parameter in both the 1D and 2D optimizations. One can also optimize over location in steps 2 and 3 of the algorithm discussed above but it significantly increases the computational cost and it is thus reserved for the final stage of joint optimization. The computation time in MATLAB for optimizing in the 2D case is on the order of several minutes.
Since the center of the kernels are fixed, it is important to initialize them near good locations to obtain better convergence. We have developed a simple automatic heuristic that operates as follows:

1. Compute Canny edges in the image.

2. Choose pairs of edge points and compute the magnitude of the cross product of the image gradient at that point.

3. Apply kernel optimization to the top few (e.g. 5 to 10) pairs and choose the final result with lowest expected error.

In particular, note the ranking in step 2 above favors edge pairs that are roughly orthogonal and have large gradient magnitude.

We now put all of this together to demonstrate the results of choosing kernels for two-dimensional translation. The results shown here are using gaussian kernels although similar results can be obtained using square kernels. First, a simple synthetic image shown at the left in Figure 3.6 was used to compute the two-dimensional return map. One can see that the optimal kernel outperforms SSD with different smoothing gaussian kernels even for twice the optimized range. In this case, the initial point were manually selected at the horizontal and vertical edge.

Figure 3.7 shows the results when the location is selected with the heuristic algorithm discussed above. The first and second row shows the results of templates chosen from a clown image in matlab and coronal view MRI image respectively. The top 10 selected image pairs are shown in the first column overlaid over the template. The green and red color corresponds to initialization points for x and y translation kernels respectively. The return map comparisons shown in the right column shows the improved performance of optimal kernels. Although one of the SSD results is comparable to the optimal kernel performance but usually the optimal sigma value for SSD is not known before hand. Also as mentioned in section 3.1 kernel-based methods can be thought of as a special case of SSD.
Figure 3.6: Comparison of SSD and optimal kernel methods on a artificial signal in 2D. The right plot shows the return map in twice the optimized range of u and v. Optimal kernel - 1D and Optimal kernel - 2D refers to the results using kernels obtained before and after the 2D joint optimization.
As discussed briefly in section 3.1, placing the kernels at the center (of the tracked region) with a scale equal to the size of the target leads to sub-optimal results (see Figure 3.1). The importance of choosing the right parameters for the kernels in real images can be illustrated in Figure 3.8. Tracking with kernel-based SSD [27] fails whereas the optimal kernel tracking tracks all the 300 frames. For each frame, 2 iterations were allowed for a fair comparison although the optimal kernel method tracks with 1 iteration as well. The inter-frame motion is on the order of 5 pixels.

Figure 3.7: Location selection using heuristics. The left column shows the 10 pairs generated by the heuristics overlaid on the template. The right column shows the return map comparisons.

The results presented in the two-dimensional case are with numerical integration, but we are currently working on getting better approximations similar to the 1D case to make the analysis compu-
Figure 3.8: Tracking Comparisons between optimal kernels (blue box) and kernel-based SSD [27] (magenta box). Frames 20, 35, 50, 100, 200 and 300 are shown in order. The kernel-based SSD tracking fails around frame 40.
tationally faster.

Figure 3.9: Comparison of rotation and scale estimation with the transformed optimal gaussian kernel and SSD Method on the clown image.

More Complex Motions Recent work by Dai in [60] has shown that with a simple change of coordinates from x, y to r, θ, the problem of tracking rotation and scale can be reduced to that of estimating 2D translation in the transformed coordinate r, θ. The transformation is given

$$x = e^r \cos \theta \quad (3.24a)$$

$$y = e^r \sin \theta \quad (3.24b)$$

Using these transformations, the optimal kernels for rotation and scale can be designed in the transformed space using the analysis discussed in Section 3.4. Figure 3.9 shows the improved performance of optimal kernel for rotation and scale in these transformed coordinates.
3.5 Conclusions

In this chapter, we have presented an objective approach for developing optimal tracking methods, and have demonstrated this approach for the specific case of kernel-based tracking. In particular, we have shown that these methods can be performed using effective approximations for one-dimensional and two-dimensional cases, and we have suggested how this can be generalized to higher-dimensional problems. The results on several examples illustrate the potential advantages of such optimizations. These results point the way toward a more principled and consistent methodology for the design of visual tracking algorithms.

In future, we plan to extend the approach to choose multiple kernels and multiple features spaces. Additionally, the coupling of optimal tracking with a surrounding predictor-estimator is of interest. As noted previously, the optimization criterion we use is closely related to that used in classical optimal estimator design. Thus, it seems likely that it will be possible to derive optimal time-series estimators using models of target dynamics to further improve the performance of these algorithms.
Chapter 4

Beat-to-Beat Motion Compensation for Robust Coronary MR Angiography

4.1 Introduction

Coronary Angiography refers to the imaging of the coronary arteries, the lifeline of the heart. These arteries supply blood to the heart muscles that contract and relax to pump blood to the rest of the body. There are two major coronary arteries that branch off from the aorta - the right coronary artery (RCA) and the left main (LM) coronary artery. The left main coronary artery further branches into the left circumflex (LCX) artery and the left anterior descending (LAD) artery as shown in Figure 4.1. The coronary arteries can become narrowed or blocked through plaque deposits on the inner walls of these arteries also known as atherosclerosis. This restricts the blood flow to the heart preventing it from functioning normally leading to chest pain (or angina) and in severe cases can lead to a heart attack. This condition is commonly known as the coronary artery disease (CAD).

CAD remains one of the major causes of morbidity and mortality in the United States, and is increasing in prevalence in non-Western cultures as well [11]. The current gold standard for diagnosis is...
Figure 4.1: The primary coronary arteries in the heart.

catheter-driven x-ray coronary angiography [62, 63, 64, 65]. During this procedure, a catheter is driven into a blood vessel in the arm or leg, and guided into the coronary arteries in the heart under X-ray. A contrast-dye is then injected through the catheter to obtain coronary angiograms. Unfortunately, this procedure involves risks owing to its invasiveness, radiation exposure and use of potentially nephrotoxic contrast agent. Therefore, a method for robust and noninvasive coronary artery screening is highly desirable for the early detection of disease. Computed tomography (CT) and magnetic resonance imaging (MRI) are good candidates and recently, have shown significant work in this direction. CT has the advantage that images are acquired quickly and with relatively good spatial resolution, but uses ionizing radiation and nephrotoxic contrast agents [66, 67, 68, 69]. MRI does not require the use of radiation, but the speed of image acquisition is slow. It thus relies on data acquired over multiple heartbeats either in a breath-hold with lower spatial resolution, or during free breathing with motion correction, over a period of 5-10 minutes, for higher spatial resolution [70, 71, 72, 73, 74]. Both MRI and CT are being used clinically for ventricular function, perfusion imaging, and infarct imaging. MRI has some inherent advantages for soft tissue discrimination, and thus may be more suitable for vessel wall imaging.
and early detection of atherosclerosis \cite{75,76,77,78}. Coronary MR has been shown to have good accuracy for triple vessel and left main disease \cite{79}, but image quality varies widely across patients and therefore is not robust for clinical use (currently 70-80% successful in practice). In addition current spatial resolution for coronary MR is on the order of 0.7 - 1 mm in plane. The tortuous geometry of the coronary arteries (see Figure 4.1) also puts forth a requirement in terms of volumetric coverage. As the coronary arteries usually do not lie on a single two-dimensional plane, they require a volume to be imaged, which translates into a longer data acquisition. Higher spatial resolution and volumetric coverage in turn places higher demands on motion compensation during image acquisition. Therefore in the area of noninvasive cardiovascular imaging, there is need to improve motion compensation for coronary MR imaging, including both angiography and vessel wall imaging.

4.2 Previous Work

The coronary arteries undergo a complex motion induced by both respiratory and cardiac motion \cite{13,80}. Although the general motion pattern of the heart due to respiration and its own contraction/expansion is well known, there is no well-defined parameterized model that can be used to characterize how the intricate combination of respiratory and cardiac motion results in the motion of the coronary arteries. Furthermore, even on a single subject, there is variation between respiratory and cardiac motion cycles as well as variation across patients. This makes it difficult to gauge and predict the motion of the coronary arteries and compensate for that motion during MR imaging. Therefore, a simple yet effective way to image the coronary arteries is to acquire imaging data when the effect of cardiac and respiratory motion is minimal. Current methods achieve this by gating the data acquisition for both respiratory and cardiac motion. For respiratory motion, one tracks the position of the diaphragm-lung interface as a function of time using a 1D “navigator” which is then used to gate the data acquisition to the end-expiratory part of the breathing cycle \cite{72,73}. To further improve the respiratory motion com-
pensation, some approaches use correlation between the acquired and the reference navigator echo to compute motion within the acceptance window usually chosen around end-expiration. One then uses a correction factor to transform the motion and use it for slice correction [72, 79, 81]. Hofman et al [82] measured coronary motion using cine-MRI and estimated the amount of coronary motion during various acquisition windows to determine the effect on blur in coronary MR images. Shechter et al also measured coronary motion but from x-ray angiography and estimated required acquisition windows for coronary MR [13]. It is thus generally well accepted that the effect of cardiac motion can be ameliorated by restricting the data acquisition to a very small time window in the mid-diastole part of the cardiac cycle where the heart motion is known to be minimal. Figure 4.2 shows the sequence diagram of a conventional coronary Magnetic Resonance Acquisition (MRA) approach.

Figure 4.2: Current Approach for coronary MRA.

Current MRA methods suffer from robustness and repeatability in healthy volunteers as well as in patients. The limitations of the current methods may be attributed to a combination of the following:

1. The assumption that the diaphragm motion and the coronary motion are correlated is not per-
2. The relationship between diaphragm motion and coronary motion does not remain constant over a 10-15 minute image acquisition period [85, 86, 87, 88].

3. The motion of the various coronary arteries is dissimilar, with different timing of peak motion in the cardiac cycle along with different absolute values of total displacement, velocity and acceleration [82, 89].

4. During multiple heartbeats, the motion of the coronary arteries can vary from beat to beat in a manner that cannot be predicted a priori [84, 15].

5. The ECG signal used to gate the cardiac motion compensated data acquisition, although known to be correlated with global cardiac motion, does not necessarily correlate with the coronary motion which further deteriorates in patients especially those with cardiac arrhythmias [82, 90].

6. Finally, there is variability of motion across subjects and patients [82, 84, 89].

4.2.1 Respiratory Motion Variability

Various methods have been tried over the last few years to address the first limitation (mentioned above) with modest success. It has been shown that the use of navigator on the heart itself yields slightly inferior results compared to the diaphragmatic navigator [15]. However, using additional navigators on the heart in the anterior/posterior and the right/left direction along with the diaphragmatic navigator (superior/inferior direction) does lead to an improvement in image quality [91]. The drawbacks of these approaches are that they still assume correlation between heart motion and coronary motion and there can be hysteretic effects during the respiratory cycle, thereby incorporating more errors [92]. Nguyen et al. [93] proposed the use of cardiac fat NAV for respiratory motion compensation. The cardiac fat NAV monitors the epicardial fat that surrounds the coronary arteries, moves together
with it, and thereby provides a direct measurement of bulk coronary artery motion. The cardiac fat NAV approach showed improvement over the conventional diaphragmatic navigator approach and eliminated the need for a subject-specific correction factor. The success of the approach was limited by the contamination of the fat NAV by the chest wall signal and use of only the S/I displacement component of the fat NAV. The problem of drift in the relationship between the diaphragm and coronary motion has been addressed reasonably well by DVA [87] and PAWS [88] approaches along with reduction in the scanning time especially in patients. Recently, a subject-specific method [94] has been proposed that builds a low resolution motion model correlated with multiple navigators and uses the inverse model online during scanning to correct for respiratory motion effects. Although this approach is subject-specific, it does not address variability in cardiac motion and in long-term respiratory motion during an acquisition. The limited success of respiratory motion compensation methods proposed so far can be attributed to the recent studies [95, 96] that demonstrate the need for an online subject-specific complex model to completely characterize the motion of the coronary arteries due to respiration. A non-navigator based approach for motion compensation using adaptive averaging was proposed by Hardy et al. [35]. In this approach, cross correlation of real-time images of a slice containing the coronary artery was used to reduce motion artifact by averaging. The major drawback of the approach was the restriction to 2D imaging and the inability to account for through plane motions limiting the overall resolution.

4.2.2 Heart Rate and Cardiac Motion Variability

It is well known that the heart rate or the electrocardiographic RR interval fluctuates cyclically, mediated predominantly through the autonomic nervous system via changes in sympathetic and parasympathetic activity [97, 98]. The significance of the heart rate variability (HRV) and its prognostic potential during short-term electrocardiographic recordings (duration of 5-15 minutes) in both normal healthy and patient populations has been quite well established now [99, 100, 101]. Standard measures of short-term
HRV for normal and patient populations have been reported in various studies [99,100,101]. Also, physiological interactions between respiration and circulation affect the HRV and introduce a high-frequency component of fluctuation in the RR interval variability [102]. This becomes an important factor during free-breathing cardiovascular magnetic resonance imaging methods. It has also been shown that systolic time interval remains relatively constant [103] compared to the diastolic time period that varies to a greater extent [104]. Also, while the systolic time interval decreases linearly with increasing heart rate, the diastolic time interval on the other hand has a much larger curvilinear decrease [103,104,105].

Unlike respiration variability, the issue of heart rate variability for coronary MRA has not been widely explored, with only a few methods proposed in recent years. Ustun et al. [106] proposed the selection of a subject-specific minimal motion window during pre-scan. The approach improved image quality but has the disadvantage that it does not account for heart rate variability during the acquisition. Recent work on trigger delay adaptation through neural networks and adaptive averaging [107] has been proposed to account for HR changes during the coronary MRA scan. However, this method included use of the ECG signal instead of actual coronary motion data, use of the lung-diaphragm interface navigator for respiratory compensation and did not account for beat-to-beat variability in cardiac motion.

Recent advances in accelerated parallel imaging has revived breath-hold coronary MRA [108,109] eliminating the need for complicated methods for compensating for respiratory motion. Since these approaches span multiple cardiac beats (usually around 30), they are still limited by the effects of beat-to-beat cardiac variability. Breath-hold techniques though, have limited application in coronary MRA as it has been observed that patients with coronary artery disease (CAD) have difficulty to both suspend respiration and repeatedly hold breath at the same position as compared to normal subjects [110]. The limited duration of breath-holds and continued diaphragmatic drifts during breath-hold (TTI) warrant free-breathing approaches.
4.3 Proposed Approach - Image-based Navigators

In this work, we hypothesize that one way to reduce the effect of motion variability and reduce the aforementioned limitations of the current methods would be to directly measure the motion of a particular coronary artery in real-time and to correct for its overall motion during data acquisition for each heart beat. The slow inherent MR image acquisition, however, presents a challenge to acquire enough data in terms of spatial coverage and temporal resolution to extract representative coronary motion data in 3D. We overcome this by using the result in [82], that the primary direction of motion of the LCX and the RCA coronary arteries are in the base-apex direction in a 4-chamber view, and the primary direction of motion of the LAD coronary artery is in approximately the head-foot direction in a short axis view, thereby assigning a generic coordinate system to the heart as shown in Figure 4.5. Thus, if the motion of the LCX, RCA and LAD coronary arteries can be measured in these two orthogonal views, the main component of motion of the coronary arteries in 3 dimensions can be derived, and used to gate the data acquisition on a beat-to-beat basis.

The process flow and sequence diagram shown in Figures 4.4 and 4.3 respectively summarizes the proposed integrated online approach. The motion of the coronary arteries is tracked using real-time imaging in the two orthogonal slice orientations as mentioned earlier. The tracked motion data is used to update the slice position/orientation through slice following i.e. update the slice geometry at the next time point with the tracked motion data from the previous time point. The trigger delay and the acquisition window duration for each heart beat are predicted using the tracked coronary motion data during the current and previous cardiac cycles. The system then switches to high resolution imaging and acquires data in the current cardiac cycle. After acquiring the high resolution data, the system switches back to real-time imaging and the procedure discussed above is repeated for all cardiac cycles. Using the tracked motion data following the high resolution acquisition, significant motion occurrence during the data acquisition can be detected and the data corresponding to that particular acquisition can
be reacquired. We refer to this approach as “image based navigators”. In order to make the approach feasible in real-time we assume that the out of plane motion between frames would be relatively small with slice following and that the duration of minimal motion of different segments of the coronary artery are similar. Although, presently we are proposing a translation motion model for tracking and slice updating, it is important to point out that the approach is general and more complex motion models including rotations can be easily incorporated in the framework.

Figure 4.3: Basic sequence-timing diagram of the proposed approach using image-based navigators.

The primary goal of our work is to investigate the extent of the coronary artery motion variability, with focus on the proximal RCA, LCX and LAD coronary arteries and how a subject-specific online proposed approach can be used to compensate for it. In particular:
1. We hypothesize that real-time imaging can be used to track these coronary arteries with sufficient accuracy to compensate for beat to beat variability in coronary motion for reducing motion artifact in high resolution coronary MR angiography. In order to accomplish this goal, we present the development and validation of a motion tracking algorithm.

2. We hypothesize that the extent of cardiac motion variability during high resolution coronary imaging is significant enough to affect image quality when fixed acquisition periods are used.

3. We also hypothesize that beat-to-beat compensation using the proposed approach can improve the image quality and robustness of high resolution coronary MRA.

4. Finally, we validate previous work that the diaphragm motion and respiratory component of the coronary motion are well correlated; and show that tracking the diaphragm motion is still insufficient for respiratory motion compensation.

In the current study, we explore the impact of this approach on image quality in an offline implementation using human motion data, but without the online feedback loop shown in Figure 4.4.
Figure 4.5: Subject-specific heart coordinate system. The X', Y' and Z' axes of the heart coordinate system are shown in 4-chamber and short axis views separately in 2D (a) and in 3D (b).
would like to note that it is beyond the scope of this work to present a complete online implementation of the proposed approach with combined real-time and high resolution imaging. Instead, our goal is to present initial evidence that this approach would make an impact on image quality as a basis for further development of an online integrated solution.

The remainder of the chapter is organized as follows. The parameters of the data acquired to test the hypotheses are presented next. Then, the details of the tracking algorithm and its validation are discussed. This is followed by a study to show the extent of heart rate variability during cardiac scans. We then present a simulation using extracted human coronary motion that shows the improvement in MR image quality when the cardiac variability is compensated for. Finally, we investigate how well the lung-diaphragm interface motion can be used to compensate for the respiratory component of coronary motion for coronary MRA.

4.4 Data Acquisition

In order to investigate the feasibility of the proposed image-based navigators, we acquired low spatial resolution real-time (LSRRT) images in 5 healthy volunteers with the subjects breathing freely. All subjects gave informed consent to a protocol approved by the local Institutional Review Board. The data consists of real-time SSFP images in the short axis, 4-chamber and coronal views taken from the 5 volunteers (4 males, 1 female, age range 22 to 41) with the following parameters: TR/TE/FL = 2.18-2.28/1.09-1.14/49-56, GRAPPA acceleration = 2, in plane reconstructed resolution = 2.76 - 2.89 mm, slice thickness = 6 - 8mm, acquisition matrix size = 50 x 128 - 68 x 128 pixels, Interpolated matrix size = 88 x 128 - 112 x 128 pixels, FOV = 243 x 354 - 324 x 370 mm, at 15-20 frames/sec for a total of approximately 750 frames during free breathing on a 1.5T scanner (Espree, Siemens). In order to validate the tracking, we also acquired both low resolution real-time (parameters same as mentioned above for free-breathing data) and high resolution cine (HRC) images in all three views with the subjects
holding their breath at end-expiration. The parameters for high resolution cine images were as follows: TR/TE/FL = 1.9-2.08/1.45-1.54/69-80, GRAPPA acceleration = 2, in plane reconstructed resolution = 1.6 - 1.92mm, slice thickness = 6mm, Acquisition matrix size = 120 x 192 -156 x 192 pixels, FOV = 212.5 x 340 - 300.5 x 370 mm, temporal resolution = 21-33msec. To better understand the difference between a real-time and cine acquisition, refer to the sequence diagrams in Figures 4.6 and 5.3.

![Sequence Diagram](image)

Figure 4.6: Sequence diagram of a real-time acquisition in cardiac MR. Images are acquired through time. As the heart is undergoing cardiac and respiratory motion, the time duration of the acquisition of each image is limited therefore the spatial resolution determined by the extent of k-space filled is low.

The coronal view was acquired to compare the respiratory component of the coronary motion and the lung-diaphragm interface motion. The 4-chamber and short axis views were selected as the orthogonal slice orientations to be used in the proposed approach as the coronary motion in these views

90
is predominantly in-plane [82]. The temporal resolution of the real-time data acquisition was selected by preliminary frequency analysis of the coronary motion in the high resolution cine images; the sampling time containing the dominant frequency components of the true coronary motion governed the temporal resolution which was found to be 15-20 Hz.

4.5 Tracking Algorithm and Validation

As mentioned in Section 2.2.1, one of the challenges for tracking in the low-resolution real-time images is that the coronary arteries themselves are not visible in all frames of the cardiac cycle (see Figure 2.14). In preliminary studies, comparing the motion of the atrio-ventricular grooves and the coronary arteries in high resolution cine images, we found high correlation between the two motion profiles. Thus, we rely on tracking the region containing the atrio-ventricular groove and the fat surrounding the coronaries as a surrogate for tracking coronary motion. Additionally, as the appearance of the target region (surrounding the coronary artery) changes significantly, we use the multiple-template tracking approach developed in 2.2. The basic idea is that the appearance of the target is a rigid body transformation of an affine combination of the templates or stored reference regions (also see Figure 2.16). The optimization simultaneously computes both the location and affine mixture in each image. We refer the reader to 2.2 for further details regarding the tracking algorithm.

Tracking of the coronary artery was performed independently in all three views. In the low resolution images, a 2D translation model was sufficient for modeling the transformation. It is important to note that the tracking framework is generic and can incorporate more complex models such as an affine model without significant increase in computational cost [4][5]. The user identified the coronary artery location in real-time images in a single cardiac cycle with the help of high resolution cine images taken at the same location. Usually, a set of 2-3 distinctive templates were chosen at end-systole, mid-diastole and end-diastolic time points in the cardiac cycle. The tracked motion data was filtered with
Savitzky-Golay and Gaussian filters to remove noise. To bring the tracked data from all volunteers into a consistent coordinate system, the motion data in the 4-chamber and short axis view was transformed into the heart coordinate system (see Figure 4.5) that is computed using the 4-chamber and short axis slice orientations. As the images in the two orthogonal views were acquired separately, the tracking of the coronary artery was performed independently in these views. Also, since the slice locations were not updated, the coronary artery was moving in and out of the plane; therefore we are not always tracking the same point on the coronary artery. This necessitates us to make an assumption that the corresponding segment of the coronary artery is undergoing similar motion pattern. This is a reasonable assumption as it is well known that out of plane coronary motion in the 4-chamber and short axis views is small [82]. However, we note that in the planned online version with slice interleaving (acquiring both orthogonal views interleaved) and slice following, both these constraints/assumptions are relaxed.

In the free-breathing low resolution real-time images, the LCX and RCA were tracked in the 4-chamber view and the LAD was tracked in the short axis and coronal views. In one of the volunteers, the fold-over artifact from chest wall affected the region around the RCA during end-systole thereby affecting the performance of the tracking algorithm significantly. Therefore, we present the results of tracking the RCA in the 4-chamber view in 4 volunteers.

Figure 4.7 shows the tracked location of LCX and LAD through the cardiac cycle in 4-chamber, short axis and coronal views whereas the RCA tracking in the 4-chamber view is shown in Figure 4.8. The transformed coordinate system and tracked coronary motion (for RCA, LCX and LAD) throughout the dataset (750 frames) in the 4-chamber and short axis views from one volunteer (out of the 5) are shown in Figure 4.9.

For validation of the tracking algorithm, we focus on the left coronary artery. Since it is almost impossible to obtain ground truth motion of the coronary arteries on a beat-to-beat basis, owing to their complex motion, we validated the tracking using two different approaches. First, we looked at
Figure 4.7: Tracked positions of LCX in the 4-chamber (1st row), and LAD in the short axis (2nd row) and coronal (3rd row) views at different points in the cardiac cycle. The box represents the tracked region with the dot representing the estimated location of the coronary artery.

Figure 4.8: Tracked positions of RCA in the 4-chamber view at different points in the cardiac cycle. The box represents the tracked region with the dot representing the estimated location of the coronary artery.
Figure 4.9: Tracked coronary motion in low resolution real-time images. The top (a) and bottom (b) rows correspond to 4-chamber and short axis views respectively. The left column shows the transformed heart coordinate system (in gray) whereas the right column shows the transformed tracked coronary motion of LCX and RCA in 4-chamber and LDA in short-axis views. The transformed tracked coronary motion plot shows the X', Y' and Z' motions.
the variability in the tracked coronary motion in the real time images taken during breath-hold. Since both the effect of respiration and cardiac variability is small during a short duration (6-8 cardiac beats) in breath-hold images, we hypothesize that the variability in coronary motion over the normalized cardiac cycle duration would be small as well. Thus, we tracked the coronary locations in the real-time breath hold images in all the three views and then segmented the systolic and diastolic periods of each cardiac cycle. The first and second order derivatives of the tracked displacement data were used to detect end-systolic (ES) and end-diastolic (ED) time points in each cardiac cycle. The zero crossing of the second derivative and the extremum in the first derivative were used to compute the ES and ED points, and also manually checked. The noise in the computation of derivatives was reduced using Gaussian filtering. Figure 4.10 shows the typical end-systolic and end-diastolic time points in the tracked coronary motion data in a volunteer. An average systolic and diastolic length was computed over the 6-8 consecutive cardiac beats. The motion data for each cardiac beat was interpolated to the average lengths and a mean motion was computed by averaging the interpolated motion data from each cardiac beat. Finally, a root mean squared (RMS) error between the interpolated motion and the mean motion data was computed over the entire normalized cardiac cycle duration. The RMS error values depicting the variability of tracked left coronary motion in real-time breath-hold images for all the 5 volunteers in all the three views is shown in Table 4.1. Note that the motion data obtained by tracking were not filtered.

Secondly, we compared the coronary motion in “high resolution cine” and “low resolution real-time” images both taken during breath-hold. The coronary locations in the “high resolution cine” images were manually selected. The systolic time point in the high resolution motion data was computed using the first and second order derivatives as mentioned above. The high resolution motion data was interpolated to the mean length of the segmented breath-hold low resolution motion data using bilinear interpolation with the systolic and diastolic segments interpolated separately to the corresponding average lengths. The comparison of the left coronary motion in high-resolution cine and low-resolution
Figure 4.10: Detected end-systolic and end-diastolic time points in the extracted coronary motion data from a 4-chamber view in a single volunteer over 8 cardiac beats.

Table 4.1: Variability of extracted left coronary motion in low resolution real-time breath-hold images.

The table shows the root mean squared (RMS) error (in mm) between the interpolated motion and the mean motion data for all the three views along the corresponding coordinate axes. A pixel in low resolution images correspond to 2.76 - 2.89 mm across all volunteers.
real-time images both taken during breath-hold for one volunteer (out of the 5) is shown in Figure 4.11.

The error between the interpolated high resolution motion data and the mean segmented breath-hold low resolution motion data was then computed. The mean and standard deviation of the error during the mid-diastolic to end-diastolic period, where the image acquisition is usually done was also computed. In general, for all the volunteers, this error was small as shown in Table 4.2. Note that, a pixel in low resolution and high resolution images across all volunteers range from 2.76 - 2.89 mm and 1.6 - 1.92 mm respectively.

Figure 4.11: Comparison of tracked coronary motion from breath-hold real-time acquisition (solid) with the motion from high resolution segmented cine acquisition (dashed) in coronal (top left), four chamber (top right) and short axis (bottom) views for a one volunteer (out of the 5). In each plot, the top and bottom subplots correspond to x and y motion respectively. The dashed-dot vertical black line corresponds to the end-systolic time.
4.6 Heart Rate Variability

Since most HRV studies have focused on long term variability (24 hours for example), there is little quantitative data indicating the magnitude of variability in short time spans used for cardiac MR imaging \[99\,100\,101\]. We analyzed the heart rate variability using the tracked motion data for the purpose of determining its impact on MRI quality (see the MR simulation section). The systolic and diastolic time periods were calculated (as discussed in the previous section) and the variability (mean and standard deviation) for both time periods was assessed for all 5 volunteers. Figure 4.12 shows the heart rate variability in these volunteers. The mean systolic period over all volunteers was 380-400 milliseconds with a standard deviation of 48-62 milliseconds. The diastolic period on the other hand had a much larger variability with a mean of 610-900 milliseconds and a standard deviation of 66-87 milliseconds as expected. The duration of the exam ranged from 10-39 minutes in the 5 subjects.

<table>
<thead>
<tr>
<th>Error between high resolution and average low resolution realtime tracked motion</th>
<th>4-chamber view</th>
<th>short axis view</th>
<th>coronal view</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean (mm)</td>
<td>std dev (mm)</td>
<td>mean (mm)</td>
</tr>
<tr>
<td>Volunteer 1</td>
<td>1.84</td>
<td>0.73</td>
<td>1.13</td>
</tr>
<tr>
<td>Volunteer 2</td>
<td>1.47</td>
<td>0.72</td>
<td>0.71</td>
</tr>
<tr>
<td>Volunteer 3</td>
<td>0.81</td>
<td>0.47</td>
<td>1.28</td>
</tr>
<tr>
<td>Volunteer 4</td>
<td>2.90</td>
<td>0.99</td>
<td>1.54</td>
</tr>
<tr>
<td>Volunteer 5</td>
<td>1.95</td>
<td>0.93</td>
<td>1.66</td>
</tr>
</tbody>
</table>

Table 4.2: Mean total error (in mm) between high resolution and average low resolution real-time tracked motion. The error is computed during the second half of the diastolic period which is defined as the duration between the middle and end points of the diastolic period.
4.7 MR Simulation

Figure 4.13: Flowchart describing the MR simulation analysis.

In order to determine the effect of cardiac motion variability on image quality prior to imple-
Figure 4.14: Acquisition window selection for adaptive (empty boxes) and fixed (filled boxes) trigger delays for window width of 65 ms. The solid curve shows the x and y motion profiles (in cm). The dotted vertical lines depict the end-systolic time point. The fixed trigger delay acquisition window depicted by the duration between the two filled boxes is calculated from minimum velocity time point in the high resolution cine sequence. The adaptive trigger delay acquisition window depicted by the duration between the two empty boxes is computed on a beat-to-beat basis as the time point corresponding to the minimum velocity point in that cardiac cycle.

menting the method online on a scanner, we used motion data derived from human subjects combined with simulation of the MR acquisition. This approach allowed us to combine realistic motion data and variability into MR simulation data, and allows the exploration of a number of algorithms for selecting the appropriate acquisition window and location for reducing motion artifacts. This approach is more efficient and less costly for refining the adaptive algorithms than implementing variants online in the scanner environment and acquiring live data. We used a synthetic image with simple structure that contained two representative coronary arteries, one oriented through the image plane and the other in-plane, each of them 4 mm in diameter. The coronary arteries are embedded in simulated myocardium which is surrounded by simulated fat as shown in Figure 4.13. The flowchart in Figure 4.13 describes the MR simulation analysis. A 2D segmented gradient echo imaging sequence was simulated (MATLAB, Math-
works Inc., Natick, MA) with the following parameters: in-plane resolution - 1mm, TE/TR/FL 8/15/20, T1 fat 260ms, blood 100ms (simulating in-flow), myocardium 870ms. For each of the 5 subjects, the coronary (RCA or LAD or LCX) motion data obtained from the tracking algorithm in each of the coronal, short axis and four chamber views (see section 4.5) were fed to the simulation. The coronary phantom underwent the extracted coronary motion while the segmented k-space acquisition was performed. Respiratory motion was first removed from the coronary trajectories by filtering out the low frequency respiratory component of the motion to reduce the analysis to cardiac motion only. We hypothesize that in the presence of cardiac variability (with the respiration removed), the proposed adaptive trigger delay acquisition window selection for each heartbeat would provide better cardiac motion compensation than the standard approach of fixed trigger delay for all heartbeats. Since the number of heartbeats used in the simulation is small, there is a chance that a single beat with large motion that falls in the center of k-space will have a large impact on the motion artifacts on the reconstructed image. Thus we ran the simulation on 10 sets of heartbeats for each case to remove bias. It is important to note that although we haven’t implemented retrospective rejection of beats with large motion this can be easily incorporated in the proposed method. The ideal fixed trigger delay was determined by locating the minimal velocity time period of the coronary artery during mid-diastole in high resolution cine images acquired at the same location. The RCA or LCX or LAD location in high resolution cine images was manually selected throughout the cardiac cycle and then filtered using Savitzky-Golay filters. A moving window average approach with a 150 ms duration window was run on the coronary velocity (computed by finite difference method) and the time point corresponding to the minimum was selected as the fixed trigger delay for all acquisition window widths. It is important to note that previous methods \cite{106,112} choose either bulk cardiac or myocardium motion for determining the optimal fixed trigger delay as compared to the actual coronary motion as done in the present study. The adaptive trigger delay was determined by the time point of minimum velocity in the second half of each heartbeat on a beat-to-beat basis. The velocity was calculated
using the first order derivatives computed as mentioned in the tracking validation section. Although one can argue that a moving window average approach similar to the one selected for estimating the fixed trigger delay would be a better approach, we chose this simple approach due to its practicality and ease of implementation for the planned online approach using prediction algorithms [113]. Acquisition window widths of 65 ms, 100 ms, 150 ms and 200 ms were tested for each subject in each of the coronal, short axis and four chamber views. Figure 4.14 shows 65 ms acquisition window selection for a few cardiac cycles for both adaptive and fixed trigger delays. The number of lines in k-space per heartbeat was 3, 5, 7.6 and 10.75 for the acquisition window widths of 65, 100, 150 and 200 ms respectively. The CNR of the coronary compared to background “myocardium”, and SNR of the coronary were computed in each case. The CNR and SNR were computed as follows

\[
\text{SNR} = \frac{I_{\text{avg-corr}}}{\sigma_{\text{air}}}
\]

\[
\text{CNR} = \frac{I_{\text{avg-corr}} - I_{\text{avg-myo}}}{\sigma_{\text{air}}}
\]

(4.1)

where \(I_{\text{avg-corr}}\) and \(I_{\text{avg-myo}}\) are the average intensities in the coronary artery region and the myocardium region surrounding the coronary artery and \(\sigma_{\text{air}}\) is the standard deviation of intensities in the air region.

As the motion applied to the synthetic image is in 2 dimensions, the curved coronary artery (see Figure 4.13) is used to discern the effect of in-plane motion and the circular coronary artery (see Figure 4.13) depicts the effect of through plane motion. In the present analysis, the SNR and CNR values of only the curved in plane coronary artery in the synthetic image is presented. We also computed the percent gain or loss in SNR (SNR\(_{gl}\)) of the adaptive delay method over the fixed delay method as

\[
\frac{\text{SNR}_{\text{adaptive}} - \text{SNR}_{\text{fixed}}}{\min(\text{SNR}_{\text{adaptive}}, \text{SNR}_{\text{fixed}})}
\]

. For each view in all the subjects, an average SNR\(_{gl}\) is computed over all the 10 simulation runs. Using the average SNR\(_{gl}\) we obtained the best and worst case results for each acquisition window across all the volunteers.

The best and worst case image comparisons of fixed and adaptive trigger delay implementations for each acquisition window are shown in Figure 4.15. Even in the worst case scenario; the ghosting
due to motion in the adaptive delay case is comparable to that in fixed delay case for all acquisition windows. In general, image quality degrades at longer acquisition windows highlighting that selection of optimal window duration as well as location in the cardiac cycle is subject specific.

A three-way ANOVA analysis (with full interaction) was also performed on both SNR and CNR values to determine the significance of the adaptive trigger delay approach over the fixed trigger delay method for all the acquisition window widths, using acquisition window length, volunteer and the trigger delay method used. The ANOVA analysis was followed by a pairwise comparison with acquisition window length and trigger delay methods as factors to test whether the means for the two trigger delay methods are statistically different for each acquisition window length.

The comparison of the CNR and SNR values computed on the reconstructed images between the adaptive and fixed trigger delay approaches for both left and right coronary arteries is shown in Figure 4.16. For the left coronary artery, across all subjects, both CNR and SNR average values were greater in the adaptive delay case than in the fixed delay case for all acquisition windows. Also, the 3-way ANOVA analysis for both SNR and CNR showed that there was statistical significance (p < 0.0001) between the means of the fixed and adaptive trigger delay methods. The statistical significance (p < 0.05) between the means (for SNR and CNR) of the two methods for each acquisition window was shown by the pair-wise comparison analysis. The incremental benefit of the adaptive trigger delay method in terms of the SNR and CNR values is much lower for the right coronary artery as compared to the left coronary artery, especially for larger acquisition window lengths. Based on our initial investigation, we believe this is due to a more complex motion profile of the right coronary artery in some volunteers that renders the simple minimum velocity point approach for computing adaptive trigger delay ineffective.
Figure 4.15: Comparison of adaptive and fixed trigger delays for image acquisition as function of acquisition window (in ms) for the simulation analysis. The left and right column shows the best and worst results in terms of percent gain or loss in SNR of the adaptive delay method over the fixed delay method for a particular acquisition window from the set of 10 runs for all volunteers in all views (see MR simulation section). 5 most representative images out of the 10 are shown. The top and bottom rows in each sub-figure correspond to adaptive and fixed trigger delay case, respectively. Note that the phase encoding and frequency encoding directions are along the column and row of the image respectively. Note that even in the worst case comparison, the adaptive delay method quality is comparable to the fixed delay method, while in the best case comparison, the adaptive delay method shows significantly better image quality as compared to the fixed delay.
Figure 4.16: SNR (left column) and CNR (right column) comparison between adaptive (dark gray) and fixed (light gray) trigger delays for different acquisition windows for left (a) and right (b) coronary artery. Each plot is a box and whisker plot in MATLAB (Mathworks Inc.). The box has lines at the lower quartile, median, and upper quartile values. The whiskers (dotted lines) are a function of inter-quartile range. The pluses denote the outliers beyond the whisker range. One can note that as the acquisition window increases, the incremental benefit of an adaptive delay is decreased.
4.8 Comparison of Diaphragm and Coronary Motion

In this part of study, we investigated the following two questions: 1) how well are the diaphragm motion and respiratory component of the coronary motion correlated? and 2) what is the extent of error introduced by using the commonly adopted 0.6 as a conversion factor [2]. Although that empirical factor is not used by all published studies, we selected it to demonstrate the effect of making any fixed assumption. In order to compare motion we track the coronary location and the lung-diaphragm interface in real-time coronal view images. Figure 4.17 (top) shows the location of the left coronary artery and the lung-diaphragm interface in a coronal view. The dots denote the center of the region indicated by dark and light gray boxes that are used for tracking (see 4.5 section for details on the tracking algorithm). A subset of the tracked profiles of both the coronary artery and the lung-diaphragm interface for one volunteer are shown as well in Figure 4.17 (bottom). Also, the respiratory component of the coronary motion extracted using Fourier filtering analysis is shown. The tracked motion profiles over a much longer duration of time (≈ a minute) is shown in Figure 4.18.

The root mean squared (RMS) error between the estimated (0.6*lung-diaphragm interface) and extracted respiratory component of coronary motion was computed during all the time points and also during mid-diastolic end-expiratory phases where data acquisition usually is performed. The end-expiratory phases were selected similar to the lung-diaphragm navigator acceptance window selection [73]. The mid-diastolic windows in end-expiratory cardiac cycles were selected manually based on minimum velocity point in mid-diastolic part of the cardiac cycle. Figure 4.19 shows the bar plot of the rms errors across all volunteers.

The total RMS error over all time points in the cardiac cycle ranged from 0.95 - 1.34 mm and during the mid-diastolic end-expiratory phases ranged from 0.47 - 1.19 mm. It is important to note here that the respiratory signals were made zero-mean before the error was computed as the offset because a difference of means would artificially increase the error.
Figure 4.17: Comparison of respiratory motion of the lung-diaphragm interface and the LAD coronary artery in a one (out of the 5) volunteer. The top figure shows the location of the LAD and lung-diaphragm interface in the coronal view (dots). The darker and lighter boxes show the tracked region for lung-diaphragm interface and LAD respectively. The bottom plot shows the motion of the 0.6*lung-diaphragm interface (solid black), total coronary motion (solid gray) and the respiratory component of the coronary motion (dashed).
Figure 4.18: Comparison of respiratory motion of the lung-diaphragm interface and the LAD coronary artery in a one (out of the 5) volunteer over a much longer duration of time (approx. a minute).

Figure 4.19: Root mean squared error between the respiratory motion of the lung-diaphragm interface and the LAD coronary artery for all volunteers.
4.9 User Interface (UI)

As a further step towards integrating the approach on an MR scanner, we have developed a real-time tracking interface that allows for testing and validation of the proposed approach without significant modifications to the scanner. In this section, we present our preliminary results from this system.

The tracking algorithm discussed in Section 4.5 was implemented in Visual C++ with a computation time of less than 0.5 millisecond per image frame on a standard laptop. The UI was built around the process flow of the tracking algorithm, which is as follows:

1. A set of images in the two orthogonal orientations of predominant coronary motion is acquired over a few cardiac cycles.

2. A representative set of multiple templates is selected in these images for tracking (done offline).

3. The user selects the tracking parameters.

4. Online images in both the orientations are then acquired in which the coronary location is tracked in real-time.

The interface was developed using RadBuilder (Siemens Corporate Research, Inc), a platform for rapid application development. The RadBuilder framework is built on top of a family of open source libraries (ITK, Open Inventor). As the proposed approach involves tracking in multiple views, the interface allows for toggling between each view for tracking initialization. Figure 4.20 shows the screenshots of the two toggled views of the UI. The bottom image shows the 4-chamber toggled view. The interface allows for loading both real-time low resolution and high resolution cine images for the template selection process. The user can view the selected templates and easily edit/modify selections. The tracking parameters can be selected from a task card. After selecting the templates and parameters, the user switches to scanner mode to start tracking on live images from the scanner. The tracking result is overlaid
on the image and shown to the user. The interface also provides a toggled view to see the tracking results in both views simultaneously as well (shown as the top image in Figure 4.20). The coronary tracking interface runs on an independent workstation connected via ethernet to the scanner host computer. The approach similar to that used in the IFE framework [114] is used for communication with the scanner to obtain images and send slice updates.

4.9.1 Initial Testing and Results

The interface was first tested offline by tracking in pre-acquired sequences of 4-chamber and short-axis images. The bottom image in Figure 4.20 shows a screenshot of LCX tracking in the 4-chamber view. The online testing was done on a volunteer and a simple phantom consisting of two tubes where the relative distance of tubes was changed to simulate non-rigid motion. The online testing was done in each orientation separately. The scanning parameters were as follows: TrueFISP images with TR/TE/FL=3.08/1.54/56, GRAPPA accel=2, in-plane resolution = 2.3mm, slice thickness = 12mm. The screenshots from online testing for the phantom and a volunteer are shown in Figure 4.21. The tracking accuracy was visually assessed and was found to be as accurate as the previous offline version of the tracking algorithm.

4.10 Discussion and Conclusions

In this chapter, we have presented a subject-specific motion compensation approach for imaging of the coronary arteries in MR. The proposed approach may reduce the effect of motion variability by tracking the location of the coronary artery on a beat-to-beat basis in real-time MR images in specific slice orientations in which the coronary artery is known to have predominant motion. The extracted motion information can then be used to compensate for motion and guide high resolution data acquisition. As the coronary motion is measured “directly”, the approach is inherently subject-specific and is suited
Figure 4.20: Screenshots of the coronary UI. The two screenshots show two (out of the four) toggled views of the UI.
Figure 4.21: Screenshots of the online testing with the coronary UI. The top one is on a simple phantom whereas the bottom one is in a volunteer.
to compensate for beat-to-beat variability in both cardiac and respiratory motion. Note that if motion of different coronaries is dissimilar [82], the proposed approach will allow targeting of a particular coronary segment if required. In the present study we hypothesized that:

1. Real-time imaging can be used to track the coronary arteries with sufficient accuracy. The low error values presented in the tracking validation results demonstrated sub pixel tracking accuracy in low resolution real-time images and showed good correlation between coronary motions in breath hold low-resolution real-time and high-resolution cine images. To gauge the error values, a pixel in low resolution and high resolution images across all volunteers corresponds to 2.76 - 2.89 mm and 1.6 - 1.92 mm respectively. Other factors of variability like the effect of respiration and the repeatability of the cardiac position over heart beats are still present. Keeping in mind the variability in coronary motion, manual coronary selection and tracking, the error values are small and within acceptable limits. The interpolation of motion data is another source of error. The tracking results were also assessed visually and were found to be in good agreement with the exception of occasional misaligned frames in early diastole which is characterized by rapid motion. Also, the tracking algorithm was able to handle long-term variations in appearance due to respiration. Although in the presented work, the tracking was done offline in MATLAB (Mathworks Inc.), we have implemented the tracking algorithm in C++ and the tracking computation time per image frame is now less than half a millisecond on a standard laptop.

2. The variability in heart rate and cardiac motion significantly affect the image quality when fixed acquisition periods are used. We have shown that there is a significant amount of variation in the heart rate during the time spans used for cardiac MR imaging. The variability in diastolic period is much larger than during the systolic period which is in agreement with prior work in heart rate variability [103][104]. As shown in Figure 4.15 motion artifacts are more pronounced when fixed trigger delay is used resulting in low SNR and CNR values (Figure 4.16). Thus, we conclude that
the image quality of the current MR methods for coronary imaging that use fixed trigger delays for
cardiac motion gating is limited in part due to the motion artifacts introduced by the variability in
cardiac cycles.

3. Beat-to-beat motion compensation can improve image quality We demonstrate that compensating
for the cardiac motion variability by adaptively choosing the trigger delay on a beat-to-beat basis
reduces the motion artifacts and hence improves the image quality (Figure 4.15). This was done
by simulating imaging of a representative synthetic coronary artery that undergoes the motion
extracted from tracking the actual coronary artery in real-time MR images. For the left coronary
artery, the SNR and CNR for all the volunteers increased for different acquisition windows if
the trigger delay was chosen adaptively as compared to the fixed case (Figure 4.16). The effect
was less pronounced for the right coronary artery. As mentioned in the results, we believe this
is due to the ineffectiveness of the simple minimal velocity approach for computing the adaptive
trigger delay in some volunteers. Presently, we are refining the algorithm to handle more complex
motion profiles for the adaptive trigger delay computation and anticipate that this would improve
results for the right coronary artery. The incremental benefit of the adaptive trigger delay was more
pronounced for the shorter acquisition windows as compared to the longer ones. This is important
as it has been shown that the duration of minimal motion in a cardiac cycle for patients is usually
small (order of 50-100ms) [82]. Although in the present work, the adaptive trigger delay (or the
minimal motion time point) was computed offline, the predictive modeling techniques [113] can
be easily incorporated into the framework for the online implementation.

4. Lung-diaphragm interface motion is insufficient to account for variability in respiratory motion of
the coronary arteries We have shown that although on average there is good correlation between
the respiratory component of coronary motion and lung-diaphragm interface motion, the variabil-
ity in the difference between the two is large suggesting that the diaphragm motion is insufficient to
completely compensate for respiratory motion of the coronary arteries. It is important to note that
the respiratory component of coronary motion only along superior/inferior direction was consid-
ered. The error would be much higher if components of respiratory motion along other directions
were considered as well.

Additionally, we have also presented an integrated system for real-time coronary motion track-
ing that will provide a basis for implementation of the proposed approach on the scanner. Although our
preliminary results are promising we recognize that the present study has a number of limitations.

1. There is a trade-off between the spatial and temporal resolutions of the real-time acquisition which
will also affect the coronary motion tracking accuracy. In the present work, we did not investigate
the selection of spatial and temporal resolutions and their effect on the tracking accuracy.

2. The method of choosing a fixed trigger delay can affect the image quality, and we have only
compared one method of selecting a fixed trigger delay.

3. A translational motion model is used and the motion is measured only in primary directions. Ac-
counting for motion components in other directions and using a more complex motion model could
make an impact in some subjects.

4. The simulation study is limited to a 2D gradient echo approach whereas most commonly used
acquisitions are 3D for coronary MRA. Also, slice following is not included in simulating the
acquisitions.

5. We have not yet addressed the need to account for motion that would occur between the end of the
tracking phase of the acquisition and the high resolution imaging phase, nor have we integrated
the tracking algorithm into the scanner yet.

6. In the present work, we have not addressed the issue of optimal acquisition window duration and
have assumed it is selected by the user and is fixed throughout the image acquisition. Varying acquisition window duration on a beat to beat basis may provide additional benefit.
Chapter 5

Improved Motion Compensation in Cardiac Valve MR Imaging

5.1 Introduction

Cardiac valves are small, rapidly moving cardiac structures that maintain unidirectional blood flow in the heart. There are four cardiac valves in the heart as shown in Figure 5.1 - mitral, tricuspid, aortic and pulmonic. The mitral and tricuspid valves, referred to as atrioventricular (AV) valves lie between the atria and the ventricles. In a normal heart, these valves allow only forward flow from the atria to the ventricles and prevent any flow backward into the atria. The aortic and pulmonic valves on the other hand are referred to as the ventriculoarterial (VA) valves and lie between the ventricles and the major vessels leaving the heart, the aorta and pulmonary artery respectively. These valves, in a healthy heart only permit flow into the vessels from the ventricles and prevent blood from flowing back into the ventricles.

The heart valves can get diseased (and dysfunctional) in mainly two ways, a valvular stenosis and valvular regurgitation. In valvular stenosis, there is narrowing, stiffening or thickening of the valve
Figure 5.1: Cardiac valves in the heart. The left image is a slice through the long axis of the heart. The image was taken from www.lifeisnow.com.

Leaflets, thereby compromising the blood flow through the valve. Alternatively, sometimes the valve becomes leaky and does not close tightly, which can cause some blood to leak backwards across the valve. This condition is known as valvular regurgitation or insufficiency. Both these conditions cause the heart to work harder in order to maintain normal blood flow to the body, which can eventually lead to heart failure.

Although the incidence of cardiac-valvular diseases in US is relatively low compared to CAD, it does cause considerable morbidity and mortality [11]. Additionally, the number of valve-related surgeries and congenital heart valve disease cases is significantly large (≈ 300,000) [11]. To fully characterize the valvular lesions in patients, in particular the ones undergoing surgical interventions, not only the valve morphology and flow needs to be quantified, but also the hemodynamic response of the heart needs to be evaluated, especially ventricular impairment.
Doppler echocardiography with color flow mapping is the dominant imaging modality for evaluating patients with valvular disease [115, 116, 117]. It has numerous advantages in terms of cost, portability, speed, and the high spatial and temporal resolution that can be achieved. However, echocardiography does suffer from technical limitations such as limited acoustic window and penetration, or the presence of complex flow patterns. Additionally, in some patients, the heart position and geometry can cause problems with transthoracic echocardiography. Recently, MR imaging has been demonstrated as an alternative or complementary non-invasive method to echocardiography for evaluating function and anatomy in valvular heart disease [118, 119, 120], especially in cases where echocardiography is limited. Another advantage of MR is that it can provide quantitative measurements of velocity and flow on a pixel-by-pixel basis across any plane through the valve or any vascular structure. In addition, MR imaging generally provides a more accurate and reliable quantification of ventricular mass and function, than echocardiography [121]. Therefore, a single MR study can provide sufficient information to assess and evaluate not only the valvular lesions but also their effect on the function of the heart.

5.2 Previous Work

As discussed in Section 4.2 of the Coronary MR Angiography chapter, the cardiac valves undergo similar complex variable motion induced by cardiac and respiratory motion. Additionally, the small size (∼ 1mm thick), the extent of motion (in the order of several centimeters) and slow data acquisition in MR makes MR imaging of the cardiac valves extremely challenging. Figure 5.2 shows the motion of the mitral and aortic valves (yellow lines) through the cardiac cycle in 4-chamber and coronal views respectively.

In order to acquire images of sufficient spatial and temporal resolution, the MR images of the valve are acquired over multiple heartbeats with a segmented acquisition, commonly known as a “cine” acquisition. Figure 5.3 shows the sequence diagram for such a segmented acquisition. The cardiac cycle
Figure 5.2: Limitation of conventional cardiac MR valve imaging. The imaging plane (shown in green) is fixed through the cardiac cycle whereas the valve plane (shown in yellow) moves in and out of it.

is divided into a fixed number of phases depending on the desired temporal resolution. The start of a phase is depicted by the trigger delay from the beginning of the R-R interval (see Figure 5.3). In each phase, the data acquisition matrix (also known as K-space) corresponding to only that phase is filled. As the time is limited, only part of the K-space is filled in each heartbeat. Thus, it requires multiple heartbeats to fill the complete K-space, the number of heartbeats decided by the desired spatial resolution. Usually, the cine acquisition is done with the subject holding his/her breath at the end-expiration. Thus in practice, both the spatial and temporal resolution of the cine acquisition is limited by the time duration of the breath-hold. Data can also be acquired during free breathing by compensating for respiration by tracking the lung-diaphragm as discussed in Section 4.2 or by data averaging across multiple heartbeats.

For valve morphology, various sequences such as fast spin-echo [122], gradient-echo [123],
Figure 5.3: Sequence diagram of a cine segmented acquisition. Images throughout the cardiac cycle are acquired. Each image (or its corresponding k-space data) is acquired over multiple heart beats.
and recently developed steady-state imaging [124,125] have been used with each having their advantages and disadvantages. The most popular technique for measurement of flow is phase-contrast MR imaging, also known as phase-shift or VENC (velocity-encoded) MR imaging. The basic principle exploited is the fact that the phase shift of the MR signal of the blood flowing along a magnetic field gradient is proportional to the blood flow velocity. Several methods over the last decade [126,127,128] have shown the efficacy of phase-contrast MR sequence for quantitative flow measurement in aortic and mitral valves.

These methods usually select a single slice containing the valve of interest, that is imaged throughout the cardiac cycle. The significant motion of the valve planes (max motion \(\approx 10-15 \text{ mm} \)) through the cardiac cycle moves it in and out of the imaging slice (see Figure 5.2), thereby sometimes providing inaccurate measurements and poor visualization. Recently, [129] proposed the use of MR tagging to estimate the valve plane through the cardiac cycle offline during a pre-scan, and then acquiring the data by adaptively moving the slice at different time points in the cardiac cycle with the motion estimated during the pre-scan. MR tagging is used as a way of labeling such that only the signal from the tissue in the valve plane shows up (see Figure 5.4). The approach was used to demonstrate improvement in velocity measurements in patients with aortic and mitral regurgitation [130]. The valve plane was tracked in one view i.e. coronal or 4-chamber view for aortic or mitral valve respectively. Dowsey et al. [131] further extended the approach by tracking in two orthogonal views for the aortic valve for improved valve visualization.

Although these methods showed improvements in flow measurements and visualization, they suffered from the disadvantage that tags fade with time, thereby making the estimation difficult in later parts of the cardiac cycle as shown in Figure 5.4. Additionally, for some valves, with tagging, it is difficult to get enough signal from the tissue in the valve plane. Figure 5.5 shows the case for mitral valve where the tagging slice was picked basal to the valve plane to get enough signal. Here, the underlying assumption is that the motion of the tagged basal plane is same as the valve plane, which is generally not
Figure 5.4: Tagging of the aortic valve plane in the coronal view through the cardiac cycle. The trigger delay time is at the bottom right of every image. The estimated valve plane is shown in solid red line whereas the initial location in the first frame is shown as a dotted red line. Note the fading of the tags towards the end of the cardiac cycle. The image was taken from [131].

the case due to complex cardiac motion.

Figure 5.5: Tagging plane selection for the mitral valve. The tagged plane (shown by the line connecting the two circular markers) was selected basal to the actual valve plane (shown by the shaded slab). The image was taken from [130].

5.3 Proposed Approach - Valve Imaging with Image-based Tracking

Similar to [129][131], the basic idea behind our proposed approach is to track the valve plane throughout the cardiac cycle in views where the valve is visible, such that during imaging process the
slice can be adaptively positioned to be in the valve plane. Unlike earlier approaches [129,131] using tagging, we use an image-based tracking algorithm to estimate the valve plane, thereby overcoming the limitation introduced by fading of the tags towards the end of the cardiac cycle. We believe our approach is generic and can be used for any valve as well as other cardiac structures. Also, it naturally extends to estimation of the valve plane in two orthogonal views.

![Diagram](image)

Figure 5.6: Basic flow of the valve imaging approach

The overall approach also shown in Figure 5.6 can thus be summarized by the following three steps:

1. Acquire high resolution cine images in 1 or 2 views orthogonal to the valve plane.

2. Track the valve plane in these high resolution images.

3. Reposition the scan plane based on tracked information throughout the cardiac to acquire motion compensated valve image data.

The two orthogonal views selected for both mitral and aortic valves are shown in Figure 5.7 and Figure 5.8 respectively. The valve planes through the cardiac cycle are estimated by tracking the region around the end-points of the valve. The tracking algorithm used is the multiple-template SSD approach discussed in 2.2. The valve is then localized by the line segment joining the end-points (center of the tracked region) of the valve. The algorithm requires user input for the selection of templates that
can be time-consuming and tedious. If the user is guided through a few frames (key frames) to select the template or reference locations of the valve end-points, the template selection process can be significantly simplified and sped up. We defer the details regarding the choice of key frames to the next section. The tracking of the mitral and aortic valves in both the orthogonal views can be seen in Figures 5.7 and 5.8 respectively.

![Figure 5.7: Mitral valve tracking in two orthogonal views in a single volunteer.](image)

The final step involves converting the tracked valve plane locations into the scanner consistent coordinates and then feeding this information to the scanner such that the imaging slice aligns with the valve plane throughout the cardiac cycle. These estimated scanner consistent valve plane locations and orientations are written to a file and read into the Scanner UI task card, which is an interface to run the scanner. Figure 5.9 shows the loading of the valve planes into the Scanner UI task card.

Since these tracking approaches use a different breathhold for pre-scan tracking data compared to data acquisition, there could be an unknown offset in valve plane positioning due to either hysteresis effects or shift between different breathholds. To overcome this problem, we propose to use real-time
Figure 5.8: Tracking of the aortic valve in two orthogonal views in a single volunteer.

Figure 5.9: Scanner UI task card showing repositioning of the scan planes
tracking in one or two breathholds before switching to the data acquisition to correct for this offset. Additionally, with MR imaging getting faster every day [108, 109], in future, the pre-scan step can be replaced by a real-time acquisition and online feedback similar to the coronary imaging approach discussed in the previous chapter (see Section 4.3).

Thus, we present the feasibility of tracking the valve in low resolution real time images. The acquisition of the the low resolution images is discussed in Section 4.4. Again, we track the region around the end-points of the valve using the multiple-template tracking algorithm discussed in 2.2. The template selection was similar to that used for coronary artery tracking (see Section 4.5). Figure 5.10 shows the tracked mitral and aortic valve planes in low-resolution images in 4-chamber and coronal views respectively. The tracking accuracy in real-time images was assessed visually and were found to be in good agreement.

5.4 Validation and Experiments

In this section, we present two validation studies - the first one to validate the image-based tracking and the second one to compare the proposed valve imaging approach using image-based tracking with the conventional fixed plane approach.

5.4.1 Study I - Tracking Validation

In this section, we validate the valve tracking against manual selection in the high-resolution images. We restrict ourselves to aortic and mitral valves in one view i.e. coronal and 4-chamber views respectively. The high resolution cine images in this study were acquired in 5 volunteers. The details on the parameters can be found in Section 4.4. As mentioned in the previous section, we track the end-points of the valve to estimate the valve plane using a semi-automatic algorithm requiring user input for the selection of templates. In order to speed-up the template selection, the user is guided through the
Figure 5.10: Tracking of mitral (top two rows) and aortic (bottom two rows) valves in low-resolution real-time images in two volunteers. Five frames from the 128 frame long sequence for each view are shown. The (first, third) and (second, fourth) rows belong to the same volunteers. The valve plane is depicted with a blue line.
“key frames” where the templates or reference locations of the valve end-points are selected. These key frame locations (in terms of percent cardiac cycle length) should contain optimal/near optimal templates and should be invariant over different volunteers. In order to find such key frames, we use the template selection process described in section 2.2.4 for every volunteer. The valve end-points of both mitral and aortic valves were manually located in all frames for all volunteers. The manual locations were smoothed and chosen as center locations for the templates with size 25x25 pixels. The number of clusters was set to 5. All the templates for each volunteer were segmented into 5 clusters using the algorithm in section 2.2.4. The key-frames were picked such that they span all 5 clusters in all the volunteers. For the mitral valve, the key-frames were selected at 0, 17.5, 37.5, 52.5 and 87.5 percent of the cardiac cycle. The key-frames for the aortic valve were at 0, 17.5, 37.5, 60, and 82.5 percent of the cardiac cycle. The tracking of both mitral and aortic valves was then performed in all volunteers using templates selected just from these key frames.

Figure 5.11 shows the valve tracking results and its comparison to manual selection in one volunteer. It is easy to see that the tracking results match very closely with the manual selection. As the orientation of the heart is volunteer-specific, the valve motion data from all volunteers in the 4-chamber view was transformed into a consistent heart coordinate system (see Figure 4.5), that was computed using the 4-chamber and short axis slice orientations. The error between the tracked and manually selected mid-point of the valves was also computed. Figure 5.12 shows the mean and standard deviation of the total error between the tracked and manually selected location of the mid-point of the valves in all 5 volunteers. The isotropic pixel dimension in these high resolution images range from 2.5-2.7mm across all volunteers.
Figure 5.11: Valve tracking and its comparison to manual selection in a single volunteer. First and second rows correspond to the mitral valve and aortic valves respectively. The blue and magenta lines corresponds to the tracked and manually selected valve planes. The first image in the top row shows the heart coordinate system. The bottom row shows the comparison of motion of the mid-point of both mitral and aortic valves.
5.4.2 Study II - Valve Imaging Comparison

Our goal in this study is to compare between the proposed valve imaging with image-based valve plane tracking and the conventional fixed plane imaging approach for both valve visualization and flow. From now on, we refer to the two approaches as “with slice tracking” and “no slice tracking”.

We implement a gradient echo (GRE) phase contrast sequence in three scenarios - 1) with a fixed plane (no slice tracking), 2) with slice tracking in 1 orthogonal view, and 3) with slice tracking in 2 orthogonal views. The data was acquired in 4 volunteers (all males) holding their breath at end-expiration with the following data acquisition parameters: TR/TE/FL - 10.98/2.72/30, VENC - 100-200 cm/sec, in-plane resolution - 1.25 x 1.35mm, slice thickness - 6mm, and temporal resolution - 55 ms (18 frames/sec). The typical magnitude and phase images for both aortic and mitral valves in one volunteer are shown in Figure 5.13.

Slice tracking with one or two views improves the valve localization throughout the cardiac cycle as compared to the no slice tracking (or fixed plane) case. Figure 5.14 shows the comparison of
Figure 5.13: Magnitude and phase images for aortic (top row) and mitral valve (bottom row) when the corresponding valves are open. The left and right column show magnitude and phase images respectively. The circle denotes the valve location.
the magnitude images of the aortic valve for a single volunteer. Better localization of the valve with slice tracking is evident as the valve leaflets are visible throughout the cardiac cycle. Improved localization of the mitral valve can also be seen in the comparison shown in Figure 5.15. It is easy to see that the area of the mitral valve (oval shape) is more consistent with slice tracking incorporated.

Figure 5.14: Comparison of the aortic valve visualization between with and without slice tracking. Three frames in the cardiac cycle are shown. The location of the valve is indicated by the green circle. The first, second and third columns correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.

We also performed the flow analysis in the Syngo Argus (Siemens Inc.) flow tool in all the three cases. This was done by first drawing a region of interest (ROI) around the valve in the phase images.
Figure 5.15: Mitral valve visualization comparison between with and without slice tracking. Three frames in the cardiac cycle are shown. The location of the valve is indicated by the green circle. The first, second and third columns correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.
throughout the cardiac cycle. Note that, it is difficult to draw the ROI around the mitral valve due to its
larger extent of motion and the complex geometry surrounding it. Therefore, for the mitral valve, we also
selected a fixed small ROI in the center of the valve. The Argus flow software then computes the flow (in
ml/sec) and mean velocity (in cm/sec) through the valve. Figure 5.16 show the typical mean velocity and
flow curves for both aortic and mitral valves in all the three cases. The software also computes the stroke
volume which is the area under the flow curve and corresponds to the throughput of blood going through
the valve. Figure 5.17 shows the stroke volume comparison in all volunteers. The peak velocity of the
flow through the valve during the cardiac cycle is also computed. For the mitral valve, the peak velocity
is computed in the smaller fixed ROI. Figure 5.17 shows the peak velocity during the cardiac cycle for
both mitral and aortic valves across all volunteers. We also performed the 2-way ANOVA test for both
stroke volume and peak velocity in two scenarios - between “no slice tracking” and “slice tracking in
one view”, and “no slice tracking” and “slice tracking in two views”. As expected, in volunteers with no
abnormality in the blood flow, there was no statistical significance in general, except in the case of peak
velocity comparison for the mitral valve (p-value ≤ 0.05).

5.5 Discussion and Conclusions

We have shown that for the task of tracking the valves in high resolution cine images, image-
based tracking is sufficiently accurate, with tracking error well within a pixel as shown in Figure 5.12. A
isotropic pixel in these high resolution images range from 2.5-2.7mm across all volunteers. It is important
to note that the manually selected valve locations are not ground truth as it is difficult to see the valve end
point in some frames. Additionally, the variability due to human error is also present. Thus, in future,
we would like to validate the tracking algorithm with ground truth motion from a moving heart phantom
as discussed in the previous chapter. We have also shown the feasibility of tracking the valves in the low
resolution real-time images. However, more work needs to be done to validate the tracking and quantify
Figure 5.16: The mean velocity and flow curves for both aortic (top row) and mitral (bottom row) valves. The left and right columns correspond to mean velocity and flow respectively. The blue, green and red curves correspond to no slice tracking, slice tracking with 1 view and slice tracking with 2 views respectively.
Figure 5.17: Stroke volume and peak velocity comparisons for flow measurements with and without slice tracking. The first and second rows correspond to aortic and mitral valves, whereas the left and right columns correspond to peak velocity and stroke volume respectively. The legend is at the bottom.
the tracking accuracy.

In our preliminary study in normal volunteers, we have shown the implementation of valve imaging with slice tracking for improved valve localization. The valve is visible throughout the cardiac cycle with the incorporation of slice tracking as shown in Figures 5.14 and 5.15. We did not notice much difference between the two cases of slice tracking with one and two views. Additionally, we wish to note that the image contrast in the slice tracking images is poor compared to the one without slice tracking as we did not focus on optimizing the MR imaging sequence for image contrast. The flow analysis in volunteers with normal blood flow did not show any statistical difference with slice tracking. Although, the peak velocity comparison for the mitral valve turned out to be significant (p-value ≤ 0.05), we need a much larger study to draw any conclusions.

As this is a preliminary study, there are some limitations that need to be addressed in future for larger studies to draw any meaningful conclusions.

1. The mitral valve curves in Figure 5.16 do not have the “A-wave” [120], that corresponds to atrial contraction and is towards the end of the cardiac cycle. As the data was acquired at a low temporal resolution, this restricted the data acquisition towards the end of the cardiac cycle owing to possible heart rate changes during the acquisition. We plan to address this problem in the future by acquiring data at a higher temporal resolution under free-breathing with respiration compensation.

2. In a normal heart, the stroke volume through the aortic and mitral valve should be same because the cardiac input and output are identical. Note that in Figure 5.17 the mitral stroke volume is lower than the aortic stroke volume. This is again due to missing “A-wave” mentioned earlier.

3. As discussed in the last paragraph, the MR imaging needs to be optimized for contrast (CNR) and signal intensity (SNR) for better morphological images.

4. In the present study, we did not account for heart-rate change between the pre-scan and data ac-
quisition. Interpolation of valve planes can be used to address this issue.

We believe that the flow analysis with the slice tracking incorporated would be beneficial in patients, especially the ones with abnormal flow patterns as shown by [130]. Thus, for future work, we would like to further evaluate our approach on patients with valve regurgitation and/or stenosis conditions.

To summarize, in this chapter, we have shown that the image-based tracking is a viable alternative to tagging approaches for improved motion compensation in valve MR imaging. The image-based tracking is a more general approach compared to tagging and can be easily applied to any valve or cardiac structure. Also, it overcomes the limitations of valve plane estimation towards the end of the cardiac cycle due to tag fading.
Chapter 6

Conclusions and Future Work

6.1 Tracking Methods

The work described in this thesis contributes towards the goal of unifying and optimizing visual tracking. With the abundance of tracking algorithms developed over the years, the choice of tracking methods for a particular application has significantly increased, but it is generally not clear what is the best algorithm to use. Most of the time, there is no single algorithm in a particular genre that is optimal and usually a combination of algorithms is the best solution. For example, for tracking an object with homogenous region and texture, intuitively a combination of feature and region based algorithms complimenting each other would yield more accurate and robust tracking than using either one individually. Additionally, there is no standard way to compare different algorithms to decide which one is a better choice.

We believe the kernel-weighted histograms and their extensions described in Chapter 2 provide a number of unifying insights into the general form and structure of visual tracking problems. Kernel-based tracking methods forge a link between the two “extremes” in the spectrum of tracking algorithms, namely blob tracking and template tracking. The SSD formulation and its extension to multiple kernels developed in Chapter 2 allows for both faster convergence and easier insights into the underlying
connection between the two. Additionally, there is a fundamental relationship between the structure of histograms for detecting and estimating target motion, and the spatial structure of the target itself. At one extreme, a simple circularly symmetric kernel places few constraints on target motion, but in the limit, as more and more kernels are added, the spatial structure of the target becomes more and more constrained. Multiple kernels also naturally extend towards tracking complex motions or certain attributes of the target. Presently, we are continuing to develop insights into more challenging tracking problems. For example, it is not yet clear how to properly adapt the histogram structure over time to adapt to changing illumination, changing target appearance, or occlusion.

Traditional kernel-based approaches choose the kernel parameters in an ad-hoc fashion and use the same kernel for all the image projections, thereby leading to sub-optimal tracking and even tracking failure in some cases. Thus, we have presented a principled approach for optimizing the kernel parameters (both scale and location) for a specific target. The optimizations performed either in a numerical fashion or using faster approximations show improvements over both traditional kernel-based and template-based SSD methods. The overall approach is general and can be used for not only optimizing but also comparing other tracking methods.

The methods as described in Chapter 3 can be easily extended to choose multiple kernels in multiple features spaces by extending the developed heuristics. However, the problem of creating a well-developed theory and good approximations to evaluate multiple kernels operating in multiple feature spaces remains an open problem, and one we are actively pursuing. For example, it is not clear how to pick multiple kernels to reduce the overall tracking error. Likewise, approximations should be efficiently computable to ensure that the optimization process can be carried out quickly on a per-target basis. This is also a topic of current consideration.

In some cases, for example in cardiac MR images, a single template is not sufficient for tracking. Furthermore, the deformations are large and unmodelled, thereby ruling out kernel-based tracking
methods as well that handle small local deformations. Thus, we have presented a multiple template-based tracking method that uses the templates itself, thereby providing a number of advantages over orthogonal basis approaches [39]. The selection of a large number of multiple templates is time-consuming and often error-prone. This can lead to underestimation of motion parameters. Thus, we present an algorithm for the selection of a few optimal templates which emerges as a natural extension from the tracking algorithm. To further improve the tracking accuracy, the approach also provides a framework for updating multiple templates online and the use of a subset of templates, for the particular case of cardiac tracking. The use of templates instead of orthogonal basis also allows the extension to the bidirectional gradient optimization that improves the range of convergence. The efficacy of the tracking algorithm was shown through the validation on MR images in different views of varying temporal and spatial resolution.

6.2 Motion Compensation in Cardiovascular MR

In the area cardiovascular MR, our goal is to develop methods to improve the speed, quality and reliability of imaging cardiac structures. We have presented motion compensation approaches for improved imaging of the coronary arteries and the cardiac valves and have demonstrated their effectiveness. The underlying principle in both the approaches is the ability to track the cardiac structure in motion affected MR images. The multiple-template algorithm mentioned earlier was used for tracking these cardiac structures.

In coronary MR imaging, the 3D data acquisition, that can only be acquired during a small window of minimal motion in the cardiac cycle places high requirements on motion compensation methods. To overcome limitations of the current approaches, we proposed a subject-specific “image-based navigators” approach that performs beat-to-beat motion compensation by estimating the coronary motion in low resolution real-time images and using the extracted motion to gate the data acquisition on a beat-to-beat basis. The respiratory motion extracted from the tracked coronary motion can be used directly
for respiratory gating, thereby overcoming the limitations of the earlier approaches, where a surrogate lung-diaphragm motion is used to compensate for respiratory component of the coronary motion. This was demonstrated through significant error between the tracked respiratory component of the coronary motion and the tracked lung-diaphragm motion across all volunteers. Additionally, as the approach measures coronary motion directly, it can handle short-term and long-term variability in coronary motion. We have presented the feasibility of the approach by tracking the coronary motion reliably and accurately in low resolution real-time MR images in different views across 5 volunteers. Through simulations, using the tracked coronary motion in human volunteers, we have demonstrated that accounting for the motion variability with adaptive window selection improves MR image quality. Therefore, we believe the proposed subject-specific “image-based navigators” approach is feasible and will have potential advantage over existing methods for coronary MR imaging by reducing the assumptions regarding motion of the coronary arteries.

As the results from our current study are promising, we plan to integrate real-time coronary tracking into the MR scanner and further evaluate the proposed approach for coronary MR imaging. This will involve sequence modification that will allow switching between real-time tracking mode and high resolution data acquisition mode. The real time capabilities of the Siemens Avanto/Espree scanners allow real time decisions regarding keeping/discarding data and shifting of slice position, based on the implementation of traditional navigators. Including application of preparation pulses (fat saturation, T2 prep, approach to steady state), the transition time is estimated to be approximately 50-70 ms. The temporal resolution for a low resolution image acquisition is 50-70 ms (15-20 frames per second) and since the approach requires acquisition of two orthogonal views, the total acquisition time for low resolution real-time images is 100-140 ms. The computation time for the tracking algorithm is on the order of 1 ms and prediction algorithms should be on the order of 10 ms [113] which is relatively small compared to the image acquisition time and should not be a limiting factor in the online implementation. Since the mo-
tion information can be extracted after the image acquisition, it will be necessary to be able to accurately predict the adaptive trigger delay at least 200 ms before the high resolution data acquisition. Thus, we are investigating the development of online algorithms based on [113] for predicting the adaptive trigger delay using tracked coronary motion history, as well as retrospective (next heartbeat) review of motion and discarding of beats with motion that is dissimilar to that of an average cardiac cycle. We would also like to briefly mention the issue of saturation bands that will be created by real-time data acquisition and might affect the high resolution data acquisition. The signal saturation bands would be restricted to the intersection planes of the orthogonal views and result in a signal drop off of approximately 30% so we believe its affect on the tracking algorithm would be minor.

In parallel we plan to extend the simulation study presented in Section 4.7 to 3D with different k-space sampling schemes and image contrasts (SSFP for example). Additionally, we intend to automate the following steps in the overall tracking algorithm: 1) selecting templates in an optimal manner to replace the current manual template selection algorithm using learning techniques, and 2) incorporating the Kalman filter [7] estimation technique to perform the filtering online, which is currently done offline. In order to fully prove and test the concept underlying the proposed approach on the scanner using the coronary UI, we would like to integrate slice position feedback into the UI based on the tracking algorithm into the framework in a manner similar to [114]. This would require the use of a slow moving ground truth MR phantom similar to the one developed by Huber et al [132]. Finally, the generic nature of the proposed approach allows the use of motion extracted from other sources for gating the data acquisition on a beat-to-beat basis. For example, bulk cardiac motion from self-gating [133] can also be used to correct for beat-to-beat motion variability. In future, we plan to compare the proposed approach using different motion extraction methods.

For cardiac valve imaging, where the demands of motion compensation are not that high, the imaging can be done usually with a 2D acquisition over a few heart beats with the subject holding their
breath. Current approaches that keep the imaging plane fixed throughout the cardiac cycle often lead to poor visualization and hemodynamic analysis as the valve moves in and out of the plane. Recently proposed tagging approaches estimate the valve plane throughout the cardiac cycle during a pre-scan and then adaptively reposition the image plane to coincide with the valve plane during actual data acquisition. We propose a generic image-based tracking approach instead to estimate valve plane during pre-scan to overcome the limitations of tagging approaches due to tag fading at the end of the cardiac cycle. Image-based tracking approach is generalizable to all the cardiac valves and possibly other cardiac structures as well, unlike the tagging approach, that has been evaluated primarily in the aortic valve. The efficacy of the image-based tracking approach was shown by validation studies establishing the accuracy of the tracking as well as implementation on the scanner. The scanner implementation showed improved valve localization and visualization and consistent flow measurements in normal volunteers. Further studies will involve evaluating patients with abnormal valve flow or morphology as well as comparison with the tagging approaches.

With recent trends of faster MR imaging, the aforementioned “image-based navigators” approach can be easily extensible for imaging the cardiac valves. We have presented preliminary results for tracking the cardiac valves in low resolution real time images for the applicability of the approach. In addition, we would like to add collaborative tracking ideas presented in [60] to further improve tracking the end-points of the valves to estimate the valve plane.

Finally, we would like to add that the motion compensation algorithms developed can be easily extended to improve diagnostic imaging of other structures and vessels such as aorta and lungs that undergo significant motion. Additionally, studies involving cardiac function such as perfusion and wall motion can benefit from the motion compensation ideas developed in this thesis.
6.3 Tracking in Image-guided Surgery

Towards the goal of vision-guided retinal surgery, we have designed and implemented a tracking algorithm for the task of tool tracking. The algorithm, based on the multiple kernel histogram ideas, can be easily extended to track other structured objects/devices in surgery and interventions. The unstructured nature of the surgical procedure along with the thin structure of the tool in the cluttered background makes the tracking really challenging. Future work involves incorporating more sophisticated models of the tool can be used to obtain better feature space segmentation.

The overall preliminary system test-bed with vision-based virtual fixture guidance [23,24] was the first example of a human-machine cooperative system guided entirely based on a visual reconstruction of the surrounding environment. The preliminary demonstration is currently being refined and ported to work with a stereo microscope setup. We believe, this general approach of creating systems that are able to sense and react to the surgical environment is central to our goal of creating effective human-machine systems.

6.4 Future Directions

We believe that the ideas and algorithms developed in this dissertation work would lay the foundations for a more structured way of developing and comparing tracking algorithms. This should provide the user with some baseline to choose the algorithms for a particular task. Additionally, the algorithms developed for a particular applications are generic and can be easily extended to other areas such as surveillance, vision-based interfaces and control, and other image-guided interventions. For example, recently, the kernel-based histogram ideas along with the Lyapunov theory has provided insights into unifying tracking and control in the area visual servoing, which were earlier considered as disparate subsystems [134]. More specifically, the kernel-based ideas can be applied to other registration problems
and hopefully gain the robustness associated with integral measures such as histograms, while making use of well-developed optimization results.

In our Engineering Research Center at Johns Hopkins University, we are interested in improving the current state of medical diagnostics, image-guided surgery and interventions. This necessitates research and development in the cross frontiers of imaging technologies, robotic and assistance devices and robust and generic algorithms. With the recent advances in the former two areas, there is still a dearth of algorithms to reliably perform a particular task. Although a lot needs to be done, the research work in this dissertation is a step forwards towards filling that gap.
Bibliography

[63] P. J. Scanlon, D. P. Faxon, A. M. Audet, et. al. ACC/AHA Guidelines for Coronary Angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the

Vita

Maneesh Dewan was born in New Delhi, India on August 5, 1978. He completed his high school from D.A.V College, Chandigarh, India in 1996. He studied Mechanical Engineering at the Indian Institute of Technology, Kharagpur, India and received the Bachelor of Technology degree in 2000. In 2002, he completed the Masters in Science and Engineering (M.S.E.) degree in Biomedical Engineering at the Johns Hopkins University, Baltimore, USA. From 2002 to 2007, he was pursuing his Ph.D. in the field of Computer Vision and Medical Imaging in the Computer Science Department at the Johns Hopkins University, Baltimore, USA. His research interests include object tracking, cardiovascular magnetic resonance imaging, vision-based control and robotics.