P vs. NP

Xin Li

lixints@cs.jhu.edu
Topics

- Equivalence of two definitions of NP.

- A new kind of reduction.

- NP-completeness and Cook-Levin Theorem.
Computation of a non-deterministic TM

- Whenever the transition function has 2 possible outcomes
 - The TM splits into 2 copies/branches, with each copy taking one outcome.

- The TM accepts an input if \exists a copy that accepts the input.

- The TM rejects an input if all copies reject the input.
Running time of a non-deterministic TM

• Similarly, an NDTM may not halt on an input for some branch of computation.

• We prefer NDTMs that halt on all branches of computation (decider).

• For a function $T: N \rightarrow N$, say an NDTM N runs in time $T(n)$ if for any input of length n, all branches of N halt within $T(n)$ steps.
NTIME and alternative definition of NP

• Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be some function. Let NTIME($T(n)$) be the set of all languages that can be decided by some NDTM in time $O(T(n))$.

• Let $NP = \bigcup_{c \geq 0} NTIME(n^c)$, i.e., all languages decidable by some NDTM in polynomial time of the input length.
Equivalence of two definitions of NP

• Recall:

• A language L is in the class NP_1 if

 \exists a polynomial function $P: N \rightarrow N$ and a polynomial time TM M s.t. $\forall x \in \{0, 1\}^*$

 $x \in L$ iff $\exists u \in \{0, 1\}^{P(|x|)}$ s.t. $M(x, u)=1$ (accept)

• $NP_2=\bigcup_{c \geq 0} NTIME(n^c)$

• Show $NP_1 = NP_2$, i.e., $NP_1 \subseteq NP_2$ and $NP_2 \subseteq NP_1$.
Proof part 1

• $NP_1 \subseteq NP_2$, i.e., \forall language L, $L \in NP_1 \Rightarrow L \in NP_2$.

 \exists a polynomial function P: $N \rightarrow N$ and a polynomial time TM M s.t. $\forall x \in \{0, 1\}^*$
 $x \in L$ iff $\exists u \in \{0, 1\}^{P(|x|)}$ s.t. $M(x, u)=1$ (accept)

• Goal: build an NDTM N to decide L based on the above definition.

• Idea: N can non deterministically guess the certificate u and then run $M(x,u)$.
Proof part 2

• $NP_2 \subseteq NP_1$, i.e., \forall language L, $L \in NP_2 \Rightarrow L \in NP_1$.

 \exists a polynomial function $P: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial time TM M s.t. $\forall x \in \{0, 1\}^*$
 $x \in L$ iff $\exists u \in \{0, 1\}^{P(|x|)}$ s.t. $M(x, u)=1$ (accept)

• Goal: If L can be decided by an NDTM in time $\text{poly}(n)$, show that $x \in L$ iff \exists a certificate.

• Idea: The certificate u is the non-deterministic choices of the transition function that lead to acceptance (the length is $\text{poly}(n)$).
From Previous Lecture

• $P \subseteq NP \subseteq EXP$

• At least one is proper.

• P vs. NP is one of the unsolved millennium problems
Ideas to prove P vs. NP

• To prove $P=NP$: show all languages in NP can be decided in polynomial time.

• To prove $P \neq NP$: show one language in NP that cannot be decided in polynomial time.

• Unify: for both cases only need to study one specific language, i.e., the hardest language in NP.
The Hardest language in NP

• How to define hardest?

• Use reduction: if $A \leq_m B$ then B is harder than A.

• A language is hardest if all other languages in this class can be reduced to it.

• Need to use a modified reduction related to the classes.
The Reduction

- When studying two complexity classes, the reduction should not be more powerful than the weaker class.

- P vs. NP: polynomial time reduction.
Mapping Reduction

- Say a language A is mapping reducible to a language B, written $A \leq_m B$, if

 $$\exists \text{ a computable function } f: \Sigma^* \rightarrow \Sigma^* \text{ s.t. } \forall w, w \in A \text{ iff } f(w) \in B$$

if and only if

never cross the boundary
Polynomial Time Reduction

• Say a language A is polynomial time (Karp) reducible to a language B, written $A \leq_p B$, if

$$\exists \text{ a polynomial time computable function } f: \Sigma^* \rightarrow \Sigma^* \text{ s.t. } \forall w, w \in A \iff f(w) \in B$$

if and only if

never cross the boundary
Properties of poly-time reduction

• If $A \leq_p B$ then

• If $B \in P$, then $A \in P$.

• If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.
NP-hard and NP-complete

• A language L is NP-hard if $\forall A \in NP, A \leq_p L$ (L is harder than all languages in NP).

• A language L is NP-complete if L is NP-hard and $L \in NP$ (L is the hardest language in NP).

• If L is NP-hard and $L \in P$, then $P=NP$.

• If L is NP-complete, then $L \in P$ iff $P=NP$.
Implications

• If L is NP-complete, then $L \in P$ iff $P=NP$.

• The P vs. NP question boils down to study one language (an NP-complete language).

• But, does such a language exist?
Cook-Levin Theorem (1971)

- The first NP-complete language.

- Soon after, Karp showed many other NP-complete languages.

- Boolean formulas and SAT.
Cook-Levin Theorem (1971)

• Define SAT=\{all satisfiable CNF formulas\}.

• Define 3SAT=\{all satisfiable 3CNF formulas\}.

• Cook-Levin Theorem: SAT is NP-complete, 3SAT is NP-complete.
Proof of Cook-Levin Theorem

• SAT is NP-complete

• Need to show:

 (1) SAT ∈ NP

 (2) ∀ L ∈ NP, L ≤_p SAT

• SAT ∈ NP:

 Certificate: a specific satisfying assignment.
SAT is NP-complete

- $\forall L \in NP, \ L \leq_p SAT$

- Can only use the definition of NP.
SAT is NP-complete

• A language L is in the class NP if

 \exists a polynomial function $P: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial time TM M s.t. $\forall x \in \{0, 1\}^*$
 $x \in L \iff \exists u \in \{0, 1\}^{P(|x|)}$ s.t. $M(x, u)=1$

• $\forall L \in NP, \ L \leq_p SAT$ if

 \exists a polynomial time computable function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. $\forall x \in \{0, 1\}^*$
 $x \in L \iff f(x)=\psi_x \in SAT.$

• Only need to show $\psi_x \in SAT \iff \exists u \in \{0, 1\}^{P(|x|)}$ s.t. $M(x, u)=1.$
SAT is NP-complete

• Only need to show $\psi_x \in \text{SAT} \iff \exists u \in \{0, 1\}^{P(|x|)} \text{ s.t. } M(x, u) = 1$.

• Idea: express the computation of $M(x, u)$ as a CNF formula ψ_x with polynomial size.

• Important idea: computation is local.
The reduction

• $3SAT \in NP$

• Show $\text{SAT} \leq_p 3\text{SAT}$

• Given any CNF formula ψ, construct in poly time another 3CNF ψ' s.t. $\psi \in \text{SAT}$ iff $\psi' \in 3\text{SAT}$.
3SAT is NP-complete

- If $\psi = C_1 \land C_2 \land \ldots \land C_m$ is already a 3CNF, done.

- Otherwise WLOG assume $C_1 = A_1 \lor B_1$ has more than 3 literals, where B_1 has 2 literals.

- Introduce a new variable u and two clauses $D_1 = A_1 \lor u$ and $D_2 = B_1 \lor \neg u$

- Let $\psi' = D_1 \land D_2 \land C_2 \land \ldots \land C_m$
3SAT is NP-complete

• Claim: \(\psi \) is satisfiable iff \(\psi' \) is satisfiable.
 \[
 C_1 = A_1 \lor B_1, \quad D_1 = A_1 \lor u, \quad D_2 = B_1 \lor \neg u
 \]

• \(\psi \) is satisfiable \(\implies \) \(\psi' \) is satisfiable

• An assignment \(z \) satisfies \(\psi \), then \(C_1 = A_1 \lor B_1 = 1 \) under \(z \).

• Can assign a value to \(u \) based on \(A_1, B_1 \) so that both \(D_1 \) and \(D_2 \) are satisfied.
3SAT is NP-complete

• ψ' is satisfiable \Rightarrow ψ is satisfiable

$$ C_1 = A_1 \lor B_1, \ D_1= A_1 \lor u , \ D_2= B_1 \lor \neg u $$

• An assignment z satisfies ψ', then $D_1 = 1$ and $D_2 = 1$ under z.

• One of A_1, B_1 must be 1 under z \Rightarrow $C_1 = A_1 \lor B_1 = 1$ under z.
3SAT is NP-complete

• $C_1 = A_1 \lor B_1$, $D_1 = A_1 \lor u$, $D_2 = B_1 \lor \neg u$

• D_2 has 3 literals, D_1 has one less literal than C_1.

• Can keep doing this until C_1 turns into a sequence of clauses with 3 literals

• Do the same for any other clause, the reduction is in poly time.