1. (20 points) Show that for every i, if $\Sigma^p_i \subseteq \Pi^p_i$ or $\Pi^p_i \subseteq \Sigma^p_i$, then $\Sigma^p_i = \Pi^p_i$.

2. (20 points) Prove that for every i, if $\Sigma^p_i = \Pi^p_i$, then the polynomial hierarchy collapses to the ith level. Prove also the reverse direction, i.e., if the polynomial hierarchy collapses to the ith level, then $\Sigma^p_i = \Pi^p_i$.

3. (20 points) A language $L \subseteq \{0,1\}^*$ is sparse if there is a polynomial p such that $|L \cap \{0,1\}^n| \leq p(n)$ for every natural number n. Show that every sparse language is in $P/poly$.

4. (20 points) Let $k \leq n$. Prove that the following family $H_{n,k}$ is a collection of pairwise independent hash functions from $\{0,1\}^n$ to $\{0,1\}^k$: Identify $\{0,1\}$ with the field $GF(2)$. For every $k \times n$ matrix A with entries in $GF(2)$, and $b \in GF(2)^k$, $H_{n,k}$ contains the function $h_{A,b} : GF(2)^n \to GF(2)^k$ defined as $h_{A,b}(x) = Ax + b$. Note: the field $GF(2)$ is just $\{0,1\}$, and the operations in $GF(2)$ are just normal operations modulo 2, i.e., $1 + 1 = 0 + 0 = 0, 1 + 0 = 0 + 1 = 1, 1 \times 1 = 1, 1 \times 0 = 0 \times 1 = 0 \times 0 = 0$.

5. (20 points) Prove that for every $AM[2]$ protocol for a language L, if the prover and the verifier repeat the protocol k times in parallel (verifier runs k independent random strings for each message) and the verifier accepts only if all k copies accept, then the probability that the verifier accepts $x \notin L$ is at most $(1/3)^k$. (Note that you cannot assume that the prover is acting independently in each execution).