1. (25 points) Prove that the language SPACETM defined in the textbook (page 83, Definition (4.3)) is PSPACE-complete.

2. (25 points) Show that in every finite two-person game with perfect information (by finite we mean that there is an a priori upper bound n on the number of moves after which the game is over and one of the two players is declared the victor—there are no draws) one of the two players has a winning strategy.

3. (25 points) Define polyL to be $\bigcup_{c>0} \text{SPACE}(\log^c n)$. Steve's class SC is defined to be the set of languages that can be decided by deterministic machines that run in polynomial time and $\log^c n$ space for some $c > 0$.

 It is an open problem whether $\text{PATH} \in \text{SC}$. Why does Savitch's Theorem not resolve this question? Is SC the same as $\text{polyL} \cap \text{P}$?

4. (25 points) Let φ be a 2CNF formula with exactly two literals per clause. Let x_1, \ldots, x_n be the variables in φ. Associate with φ a directed graph $G_\varphi = (V, E)$, where

 $$V = \{ x_1, \overline{x_1}, x_2, \overline{x_2}, \ldots, x_n, \overline{x_n} \}$$

 (i.e., V is the set of all literals that may appear in φ), and a pair (t_1, t_2) is an edge in G_φ iff $(\overline{t_1} \lor t_2)$ is a clause in φ.

 (a) Show that φ is unsatisfiable iff there is a directed cycle in G_φ in which both x_i and $\overline{x_i}$ appear, for some variable x_i.

 (b) Use part a) to show that 2SAT is in NL.

 (c) Show that $\overline{\text{PATH}} \leq_\ell \text{2SAT}$. Use this and part b) to show that 2SAT is NL-complete.