Problem 1

Answer. (a) HALT is **NP**-hard. We prove that, for any language $L \in \text{NP}$, $L \leq_p$ HALT.

If $L \in \text{NP}$, there exists a polynomial time TM M and a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L \iff \exists u \in \{0, 1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1.$$

We claim that, for every x, another string x' can be constructed in polynomial time such that $x \in L \iff x' \in \text{HALT}$. The construction follows.

On input x, we construct $x' = \langle S \rangle$ where S is a TM that runs M on every $u \in \{0, 1\}^{p(|x|)}$ to check whether there is a $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$. If yes, then S will halt. Otherwise, S will loop forever. S can be constructed in polynomial time.

Here is the analysis. If $x \in L$, then there exists $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$. So $x' \in \text{HALT}$. If $x \not\in L$, $\forall u \in \{0, 1\}^{p(|x|)}$, $M(x, u) = 0$, so S will loop forever. Thus $x' \not\in \text{HALT}$. This proves that $L \leq_p$ HALT.

As a result, HALT is **NP**-hard.

(b) No, because HALT is not in **NP**. Suppose HALT is in **NP**. As **NP** \subseteq **EXP**, HALT can be decided by a DTM in exponential time. However, HALT is not decidable. This is a contradiction. So HALT is not in **NP**.

Problem 2

Answer. By definition of **NP**, as L_1 is in **NP**, there exists a polynomial time TM M_1 and a polynomial $p_1 : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L_1 \iff \exists u \in \{0, 1\}^{p_1(|x|)} \text{ s.t. } M_1(x, u) = 1.$$

Also, as L_2 is in **NP**, there exists a polynomial time TM M_2 and a polynomial $p_2 : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L_2 \iff \exists u \in \{0, 1\}^{p_2(|x|)} \text{ s.t. } M_2(x, u) = 1.$$

(a) The language $L_1 \cup L_2$ is in **NP**. This can be shown by constructing another verifier R which is a TM that works as follows. On input x and $u = u_1 \circ u_2 \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}$, R runs $M_1(x, u_1)$ and $M_2(x, u_2)$ simultaneously.
\(\{0, 1\}^{p_1(|x|) + p_2(|x|)} \) (\(u_1 \) has length \(p_1(|x|) \)), \(R \) runs \(M_1(x, u_1) \) and \(M_2(x, u_2) \). If at least one of them outputs 1, \(R \) outputs 1. Otherwise \(R \) outputs 0.

We notice that \(R \) runs in polynomial time as both \(M_1 \) and \(M_2 \) run in polynomial time.

If \(x \in L_1 \), let \(u_1' \) be such that \(M_1(x, u_1') = 1 \). Then \(R \) will output 1 on input \(\langle x, u_1' \circ 1^{p_2(|x|)} \rangle \). If \(x \in L_2 \), let \(u_2' \) be such that \(M_2(x, u_2') = 1 \). Then \(R \) will output 1 on input \(\langle x, 1^{p_1(|x|)} \circ u_2' \rangle \). Thus if \(x \in L_1 \cup L_2 \), there is a \(u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \) such that \(R(x, u) = 1 \). On the other hand, if \(x \notin L_1 \cup L_2 \), we know that \(\forall u_1 \in \{0, 1\}^{p_1(|x|)}, M_1(x, u_1) = 0 \) and \(\forall u_2 \in \{0, 1\}^{p_2(|x|)}, M_2(x, u_2) = 0 \). So \(\forall u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}, R(x, u) = 0 \). This proves that there exists a polynomial time TM \(R \) s.t.

\[
x \in L_1 \cup L_2 \iff \exists u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \text{ s.t. } R(x, u) = 1.
\]

So \(L_1 \cup L_2 \) is in \(\text{NP} \).

(b) The language \(L_1 \cap L_2 \) is also in \(\text{NP} \). It can be shown by constructing another verifier \(R \) which is a TM that works as follows. On input \(x \) and \(u = u_1 \circ u_2 \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \) (\(u_1 \) has length \(p_1(|x|) \)), \(R \) runs \(M_1(x, u_1) \) and \(M_2(x, u_2) \). If both of them output 1, \(R \) outputs 1. Otherwise \(R \) outputs 0.

As a result, first we know that \(R \) runs in polynomial time as both \(M_1 \) and \(M_2 \) runs in polynomial time. Second, if \(x \in L_1 \cap L_2 \), there exists \(u_1 \in \{0, 1\}^{p_1(|x|)} \) such that \(M_1(x, u_1) = 1 \) and there exists \(u_2 \in \{0, 1\}^{p_2(|x|)} \) such that \(M_2(x, u_2) = 1 \). So there is a \(u = u_1 \circ u_2 \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \) such that \(M_1(x, u_1) = 1 \) and \(M_2(x, u_2) = 1 \). Thus \(R(x, u) = 1 \). On the other hand, if \(x \notin L_1 \cap L_2 \), we know that either \(\forall u_1 \in \{0, 1\}^{p_1(|x|)}, M_1(x, u_1) = 0 \) or \(\forall u_2 \in \{0, 1\}^{p_2(|x|)}, M_2(x, u_2) = 0 \). So \(\forall u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}, R(x, u) = 0 \). Thus there exists a polynomial time TM \(R \) s.t.

\[
x \in L_1 \cap L_2 \iff \exists u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \text{ s.t. } R(x, u) = 1.
\]

So \(L_1 \cap L_2 \) is in \(\text{NP} \). \(\square \)

Problem 3

Answer. Let \(L \) be an arbitrary language in \(\text{P} \), where \(L \neq \emptyset, L \neq \Sigma^* \).

For every \(L' \in \text{NP} \), we show \(L' \leq_p L \).

As \(L \neq \emptyset \) and \(L \neq \Sigma^* \), there exists a string \(a \) s.t. \(a \in L \) and a string \(b \) s.t. \(b \notin L \).
Since $P = \text{NP}$, $L' \in P$, assume the decider for L' is M' which runs in polynomial time. We define a function f as follows. For every $x \in \Sigma^*$, we conduct $M'(x)$, if $M'(x) = 1$ then $f(x) = a$, otherwise $f(x) = b$.

As a result, $\forall x \in \Sigma^*, x \in L' \Leftrightarrow M'(x) = 1 \Leftrightarrow f(x) \in L$

This shows $L' \leq_P L$. So L is NP-hard. Thus it is NP-complete.

Problem 4

Answer. We reduce VERTEX COVER to DOMINATING-SET.

For every string x, we will prove that another string x' can be constructed in polynomial time such that $x \in \text{VERTEX COVER} \iff x' \in \text{DOMINATING-SET}$.

Let $x = \langle G, k \rangle$ where $G = (V, E)$. we can construct x' in the following way. First construct another graph $G' = (V', E')$ using G. Without lost of generality, assume that G does not have vertices which has degree 0. Let $V' = V \cup V_E$ where V_E is a set of new vertices such that each vertex $v_e \in V_E$ if and only if $e \in E$. On the other hand, let $E' = E \cup \tilde{E}$. Here \tilde{E} includes the edges (v_e, u) and (v_e, w) for every $v_e \in V_E$ where $e = (u, w)$. Let $x' = \langle G', k \rangle$.

Next we will show that $x \in \text{VERTEX COVER} \iff x' \in \text{DOMINATING-SET}$.

If G has a vertex cover C of size k, then G' has a dominating set of size k. To see this, we claim the dominating set of G' is exactly C. Let's consider every vertex in G'. For every $v \in V$, as we have assumed that v has degree at least 1, it is connected with an edge of E. As C is a vertex cover, this edge is connected with a vertex of C. So either v is in C or v is adjacent to a vertex in C. For every $v_e \in V_E$, as the edge $e \in E$ is connected with a vertex in C, according to our definition of v_e, we know that v_e is also adjacent to that vertex. As a result, C is a dominating set of G'.

On the other hand, if G' has a dominating set which is D of size k, we claim that a vertex cover C for G of size k can be found. Next we describe an algorithm to find C.

First let C be the empty set. Then for each vertex v in D, if $v \in V$, put v into C. If $v \in V_E$, assuming it corresponds to the edge $e = (u, w)$, put either u or w into C.

As a result, $|C| \leq k$. Consider every edge $e = (u, w) \in E$. We know v_e is adjacent to a vertex v' of D. This vertex can only be v_e, u or w. In any case, one of u and w is in C which covers the edge e. As a result, C covers all the edges. This means it is a vertex cover of size at most k for G.

So we have that DOMINATING-SET is NP-hard.
Next we show that it is in \textbf{NP}. For $x = (G = (V, E), k)$ the certificate is a set D of vertices such that $D \subseteq V$. Thus $|D| \leq |V|$. The verifier TM M checks whether D is a dominating-set of size k for G. This checking can be accomplished in polynomial time as we can check the vertices one by one to make sure that each vertex is either in D or adjacent to a vertex in D. According to the definition of \textbf{NP}, DOMINATING-SET is in \textbf{NP}.

As a result, DOMINATING-SET is \textbf{NP}-complete.

Problem 5

Proof. For every language $L \in \textbf{NP}$, as $\textbf{P} = \textbf{NP}$, $L \in \textbf{P}$. Thus $\overline{L} \in \textbf{P}$. Hence, $L \in \textbf{coNP}$.

For every language $L \in \textbf{coNP}$, we know that $\overline{L} \in \textbf{NP}$. As $\textbf{P} = \textbf{NP}$, $\overline{L} \in \textbf{P}$. Thus $L \in \textbf{P}$. Hence, $L \in \textbf{NP}$.

This proves that if $\textbf{P} = \textbf{NP}$, then $\textbf{NP} = \textbf{coNP}$.

\[\square\]