Problem 1

Answer. (a) HALT is NP-hard. We prove that, for any language $L \in \text{NP}$, $L \leq_p$ HALT.

If $L \in \text{NP}$, there exists a polynomial time TM M and a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L \iff \exists u \in \{0, 1\}^{p(|x|)} \text{ s.t. } M(x, u) = 1.$$

We claim that, for every x, another string x' can be constructed in polynomial time such that $x \in L \iff x' \in \text{HALT}$. The construction follows.

On input x, we construct $x' = \langle S \rangle$ where S is a TM that runs M on every $u \in \{0, 1\}^{p(|x|)}$ to check whether there is a $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$. If yes, then S will halt. Otherwise, S will loop forever. S can be constructed in polynomial time.

Here is the analysis. If $x \in L$, then there exists $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$. So $x' \in \text{HALT}$. If $x \notin L$, $\forall u \in \{0, 1\}^{p(|x|)}$, $M(x, u) = 0$, so S will loop forever. Thus $x' \notin \text{HALT}$. This proves that $L \leq_p \text{HALT}$.

As a result, HALT is NP-hard.

(b) No, because HALT is not in NP. Suppose HALT is in NP. As NP \subseteq EXP, HALT can be decided by a DTM in exponential time. However, HALT is not decidable. This is a contradiction. So HALT is not in NP.

Problem 2

Answer. By definition of NP, as L_1 is in NP, there exists a polynomial time TM M_1 and a polynomial $p_1 : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L_1 \iff \exists u \in \{0, 1\}^{p_1(|x|)} \text{ s.t. } M_1(x, u) = 1.$$

Also, as L_2 is in NP, there exists a polynomial time TM M_2 and a polynomial $p_2 : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in \{0, 1\}^*$,

$$x \in L_2 \iff \exists u \in \{0, 1\}^{p_2(|x|)} \text{ s.t. } M_2(x, u) = 1.$$

(a) The language $L_1 \cup L_2$ is in NP. This can be shown by constructing another verifier R which is a TM that works as follows. On input x and $u = u_1 \circ u_2 \in$
\{0, 1\}^{p_1(|x|) + p_2(|x|)} \ (u_1 \text{ has length } p_1(|x|)), R \text{ runs } M_1(x, u_1) \text{ and } M_2(x, u_2). \ If \ at \ least \ one \ of \ them \ outputs \ 1, R \ outputs \ 1. \ Otherwise \ R \ outputs \ 0.

We notice that \(R\) runs in polynomial time as both \(M_1\) and \(M_2\) run in polynomial time.

If \(x \in L_1\), let \(u_1'\) be such that \(M_1(x, u_1') = 1\). Then \(R\) will output 1 on input \(\langle x, u_1' \circ 1^{p_2(|x|)} \rangle\). If \(x \in L_2\), let \(u_2'\) be such that \(M_2(x, u_2') = 1\). Then \(R\) will output 1 on input \(\langle x, 1^{p_1(|x|)} \circ u_2' \rangle\). Thus if \(x \in L_1 \cup L_2\), there is a \(u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}\) such that \(R(x, u) = 1\). On the other hand, if \(x \notin L_1 \cup L_2\), we know that \(\forall u_1 \in \{0, 1\}^{p_1(|x|)}, M_1(x, u_1) = 0\) and \(\forall u_2 \in \{0, 1\}^{p_2(|x|)}\), \(M_2(x, u_2) = 0\). So \(\forall u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}\), \(R(x, u) = 0\). This proves that there exists a polynomial time TM \(R\) s.t.

\[
x \in L_1 \cup L_2 \Leftrightarrow \exists u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \text{ s.t. } R(x, u) = 1.
\]

So \(L_1 \cup L_2\) is in \(\text{NP}\).

(b) The language \(L_1 \cap L_2\) is also in \(\text{NP}\). It can be shown by constructing another verifier \(R\) which is a TM that works as follows. On input \(x\) and \(u = u_1 \circ u_2 \in \{p_1(|x|) + p_2(|x|)\}\) (\(u_1\) has length \(p_1(|x|)\)), \(R\) runs \(M_1(x, u_1)\) and \(M_2(x, u_2)\). If both of them output 1, \(R\) outputs 1. Otherwise \(R\) outputs 0.

As a result, first we know that \(R\) runs in polynomial time as both \(M_1\) and \(M_2\) run in polynomial time. Second, if \(x \in L_1 \cap L_2\), there exists \(u_1 \in \{0, 1\}^{p_1(|x|)}\) such that \(M_1(x, u_1) = 1\) and there exists \(u_2 \in \{0, 1\}^{p_2(|x|)}\) such that \(M_2(x, u_2) = 1\). So there is a \(u = u_1 \circ u_2 \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}\) such that \(M_1(x, u_1) = 1\) and \(M_2(x, u_2) = 1\). Thus \(R(x, u) = 1\). On the other hand, if \(x \notin L_1 \cap L_2\), we know that either \(\forall u_1 \in \{0, 1\}^{p_1(|x|)}, M_1(x, u_1) = 0\) or \(\forall u_2 \in \{0, 1\}^{p_2(|x|)}\), \(M_2(x, u_2) = 0\). So \(\forall u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)}\), \(R(x, u) = 0\). Thus there exists a polynomial time TM \(R\) s.t.

\[
x \in L_1 \cap L_2 \Leftrightarrow \exists u \in \{0, 1\}^{p_1(|x|) + p_2(|x|)} \text{ s.t. } R(x, u) = 1.
\]

So \(L_1 \cap L_2\) is in \(\text{NP}\).

\[\square\]

Problem 3

Answer. Let \(L\) be an arbitrary language in \(\text{P}\), where \(L \neq \emptyset, L \neq \Sigma^*\).

For every \(L' \in \text{NP}\), we show \(L' \leq_p L\).

As \(L \neq \emptyset\) and \(L \neq \Sigma^*\), there exists a string \(a\) s.t. \(a \in L\) and a string \(b\) s.t. \(b \notin L\).
Since $P = NP$, $L' \in P$, assume the decider for L' is M' which runs in polynomial time. We define a function f as follows. For every $x \in \Sigma^*$, we conduct $M'(x)$, if $M'(x) = 1$ then $f(x) = a$, otherwise $f(x) = b$.

As a result, $\forall x \in \Sigma^*, x \in L' \iff M'(x) = 1 \iff f(x) \in L$

This shows $L' \leq_p L$. So L is NP-hard. Thus it is NP-complete.

\[
\square
\]

Problem 4

Answer. We reduce VERTEX COVER to DOMINATING-SET.

For every string x, we will prove that another string x' can be constructed in polynomial time such that $x \in$ VERTEX COVER $\iff x' \in$ DOMINATING-SET.

Let $x = (G, k)$ where $G = (V, E)$. we can construct x' in the following way. First construct another graph $G' = (V', E')$ using G. Without lost of generality, assume that G does not have vertices which has degree 0. Let V_E is a set of new vertices such that each vertex $v_e \in V_E$ if and only if $e \in E$. On the other hand, let $E' = E \cup \tilde{E}$. Here \tilde{E} includes the edges (v_e, u) and (v_e, w) for every $v_e \in V_E$ where $e = (u, w)$. Let $x' = (G', k)$.

Next we will show that $x \in$ VERTEX COVER $\iff x' \in$ DOMINATING-SET.

If G has a vertex cover C of size k, then G' has a dominating set of size k. To see this, we claim the dominating set of G' is exactly C. Let’s consider every vertex in G'. For every $v \in V$, as we have assumed that v has degree at least 1, it is connected with an edge of E. As C is a vertex cover, this edge is connected with a vertex of C. So either v is in C or v is adjacent to a vertex in C. For every $v_e \in V_E$, as the edge $e \in E$ is connected with a vertex in C, according to our definition of v, we know that v is also adjacent to that vertex. As a result, C is a dominating set of G'.

On the other hand, if G' has a dominating set which is D of size k, we claim that a vertex cover C for G of size k can be found. Next we describe an algorithm to find C.

First let C be the empty set. Then for each vertex v in D, if $v \in V$, put v into C. If $v \in V_E$, assuming it corresponds to the edge $e = (u, w)$, put either u or w into C.

As a result, $|C| \leq k$. Consider every edge $e = (u, w) \in E$. We know v_e is adjacent to a vertex v' of D. This vertex can only be v_e, u or w. In any case, one of u and w is in C which covers the edge e. As a result, C covers all the edges. This means it is a vertex cover of size at most k for G.

So we have that DOMINATING-SET is NP-hard.
Next we show that it is in \mathbf{NP}. For $x = (G = (V, E), k)$ the certificate is a set D of vertices such that $D \subseteq V$. Thus $|D| \leq |V|$. The verifier TM M checks whether D is a dominating-set of size k for G. This checking can be accomplished in polynomial time as we can check the vertices one by one to make sure that each vertex is either in D or adjacent to a vertex in D. According to the definition of \mathbf{NP}, DOMINATING-SET is in \mathbf{NP}.

As a result, DOMINATING-SET is \mathbf{NP}-complete.