Problem 1

Answer. Assume the two-dimensional TM is M. It runs in time $T(n)$. The positions that M could have visited on the 2-dimension tape are contained in the $T(n) \times T(n)$ square. Now we construct another 1-dimension TM M_1.

M_1 has 2 tapes t_1, t_2.

We will map the two-dimensional tape of M to the tape t_1 of M_1, similar as what we did in class to map the set of rational numbers to the set of natural numbers. Specifically, the xth position in t_1 corresponds to the position (p,q) on the 2-dimensional tape of M. For any position (p,q) on the 2-dimension tape, assume (p,q) is on the diagonal of a square. The number of positions on the diagonal is $d = p + q + 1$, thus we set $x = \sum_{i=1}^{d-1} + p$.

The tape t_2 is used to record the current position of the tape head s of M, the current position of the tape head s_1 for t_1 of M_1, a number c which indicates how many steps are left from the current position of s_1 to its destination x. Also t_2 is used as a working tape for some intermediate computations.

M_1 simulates one step of M as follows. First update the symbol at the current position, and compute the new position (p,q) of head s of M according to the transition function. Then we can compute the corresponding position x on t_1. After we get x we compute the distance c between x and the current position of s_1. Then M_1 starts to move s_1 to its destination. Each time s_1 moves 1 step, decrease c by 1. M_1 keeps moving s_1 until $c = 0$.

One move at (p,q) in the 2-dimension tape corresponds to at most $d + 1 = O(T(n))$ steps on the 1-dimension tape t_1. Since M runs in time $O(T(n))$, M_1 runs in time $O(T(n)^2)$.

Problem 2

Answer. Consider an arbitrary RAM TM M with running time $T(n)$. We give a standard TM M' which can simulate M with running time $O(T(n)^2)$.

M and M' have the following difference. M' does not have the array A. But it has an additional tape A' which is used to simulate A. The tape A' contains a list of elements $A'[0], A'[1], A'[2], \ldots, A'[l]$. Each $A'[i]$ contains an address and a symbol.
Whenever M' enters the state q_{access}, it does the following. If its address tape contains $\downarrow i \downarrow R$, then M' will scan A' to find the address $\downarrow i \downarrow$. When it finds $\downarrow i \downarrow$ in $A'[i^*]$, it reads the the symbol in $A'[i^*]$, writing it next to R on the address tape. If the address tape contains $\downarrow i \downarrow W\sigma$, then M' also scans the tape A'. When it retrieves the address $\downarrow i \downarrow$ in $A'[i^*]$, the symbol in $A'[i^*]$ is rewritten to be σ. If M' does not retrieve the address $\downarrow i \downarrow$ by reading all the element in A', then M' sets $t = t + 1$ and creates a new element $A'[t]$ which contains the address $\downarrow i \downarrow$ and the symbol σ.

The time complexity for R and W operations are both $O(T(n))$ because we only need to go through all the elements in A' for once and there are at most $T(n)$ visited cells in A'. As M runs in the same way as M' does except for the R and W operations, the time complexity of M' is $O(T(n)^2)$.

Problem 3

Answer. Reduce the function UC to T.

Assume we have a TM R that decides T. Now we are going to construct another TM S that computes UC.

S works in the following way. Assume the input is $\langle M \rangle$. Then S first constructs another TM M_1.

Assume the input for M_1 is x. M_1 is described as follows.

- If $x \neq 001$ then M_1 accepts.
- Else, meaning $x = 001$, run $M(\langle M \rangle)$. If $M(\langle M \rangle) = 1$, then M_1 accepts; if $M(\langle M \rangle) = 0$, M_1 rejects.

Then S uses R to get $R(\langle M_1 \rangle)$. Set $S(\langle M \rangle) = 1 - R(\langle M_1 \rangle)$.

Here is the explanation. If the input $\langle M \rangle$ is s.t. $M(\langle M \rangle) = 1$, R will accept $\langle M_1 \rangle$ as M_1 accepts every string. So $S(\langle M \rangle) = 0$. On the other hand, if $M(\langle M \rangle) = 0$ or M does not halt on $\langle M \rangle$, then M_1 does not accept $x = 001$. So $\langle M_1 \rangle$ is not in T. Thus $R(\langle M_1 \rangle) = 0$ and $S(\langle M \rangle) = 1$.

According to the definition of UC, S computes UC successfully. However we know that UC is uncomputable. This means that T is not decidable.

Problem 4

Answer. (b) The TM M that decides TRIANGLEFREE: Given a graph $G = (V,E)$, M checks every triple of vertices to see whether they are all distinct and connected. If yes then M rejects, otherwise M accepts.
As M will try every triple of vertices, it can find the triangle if G does have one. And it will not find it if G does not have one.

Assume the input length is n. The total number of triple of vertices is $\binom{|V|}{3}$ which is a polynomial of n. As checking the connectivity between two vertices can be done in polynomial time, the time complexity of M is a polynomial of n. So TRIANGLEFREE $\in \mathsf{P}$.

(c) The TM M that decides $\mathsf{BIPARTITE}$: Given a graph $G = (V,E)$, M conducts a depth first search on G to divide V into to sets A and B. Every vertex is set to be unvisited at the beginning. At the start, M visits an arbitrary vertex u, setting u to be visited, putting it into A. During the search, whenever visiting an unvisited vertex w from a visited vertex v, M does the following. First, M set w to be visited. Then w is put into A if v is in B and w is put into B otherwise. At last, M checks every visited vertices x adjacent to w, if w and x are in the same set, then M rejects and halts. After the search, if M still does not reject, it accepts.

Now we prove the correctness of the algorithm.

If M accepts, then M has divided V into A and B. We claim that there is no edge between vertices in A. Suppose there is an edge (u,v) in A. Assume u is visited before v being visited. When M visits v, it will then check every visited vertex adjacent to v, finding that u and v are in the same set. So M will reject, contradicting that M accepts. So the claim holds. Similarly there is no edge between vertices in B. Thus $G \in \mathsf{BIPARTITE}$.

On the other hand, if M rejects, there exists a circle in G which has an odd number of vertices. This circle cannot be bi-partied. So $G \notin \mathsf{BIPARTITE}$.

As the depth first search has time complexity $O(|V| + |E|)$, the overall running time of M is polynomial of its input length. So $\mathsf{BIPARTITE} \in \mathsf{P}$. \hfill \qed