Theory of Computation Instructor: Xin Li

- 1. (25 points) An undirected graph is *bipartite* if its nodes may be divided into two sets so that all edges go from a node in one set to a node in the other set. Show that a graph is bipartite if and only if it does't contain a cycle that has an odd number of nodes. Let $BIPARTITE = \{\langle G \rangle | G \text{ is a bipartite graph}\}$. Show that $BIPARTITE \in \mathsf{NL}$.
- 2. (25 points) Let φ be a 2CNF formula with exactly two literals per clause. Let x_1, \dots, x_n be the variables in φ . Associate with φ a directed graph $G_{\varphi} = (V, E)$, where

$$V = \{x_1, \overline{x_1}, x_2, \overline{x_2}, \cdots, x_n, \overline{x_n}\}$$

(i.e., V is the set of all literals that may appear in φ), and a pair (t_1, t_2) is an edge in G_{φ} iff $(\overline{t_1} \vee t_2)$ is a clause in φ .

- (a) Show that φ is unsatisfiable iff there is a directed cycle in G_{φ} in which both x_i and $\overline{x_i}$ appear, for some variable x_i .
- (b) Use part a) to show that 2SAT is in NL.
- (c) Show that $\overline{\text{PATH}} \leq_{\ell} 2\text{SAT}$. Use this and part b) to show that 2SAT is NL-complete.
- 3. (15 points) Problem 4.10 in Required Textbook.
- 4. (15 points) Problem 4.12 in Required Textbook.