Problem 1

Answer.

Problem 2

Answer. (a) No.

Assume B is a regular language. By pumping lemma, there exists a constant p such that $\forall s \in B, |s| > p$, s can be broke into three sub-strings $s = xyz$ such that

- $|y| > 0$;
- $|xy| \leq p$;
- $\forall i \geq 0, xy^iz \in B$.

Consider $s = 1^p 001^p$. As $|xy| \leq p$, y can be 1^n for any integer $n \in [1, p]$. By pumping lemma, xy^2z is in B. However, $xy^2z = 1^{p+n} 001^p$ is not in B.

(b) Yes. Consider the regular expression $(0(0 \cup 1)^*0) \cup ((1(0 \cup 1)^+1))$. Assume it is language L. Here for expression R, $R^+ = R \circ R^*$.

We will show $C = L$.

For every $s = s_0 \circ s_1 \cdots s_n \in C$, the first character of s is s_0. The last character of s is also $s_n = s_0$ according to the definition of C. Here s_0 can only be 0 or 1 and $s_2 \cdots s_{n-1} \in (0 \cup 1)^+$. So $s \in L$.

For every $s = s_0 \circ s_1 \cdots s_n \in L$, we know $s_0 = s_n$. Let $w = s_0, t = s_2 \cdots s_{n-1},$ then $s = wtw^R$. So $s \in C$.

So $C = L$. Thus C is a regular language.

Problem 3

Answer. For a regular language A, let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A.

We construct an NFA $M' = (Q', \Sigma', \delta', q'_0, F')$. Here M' is a copy of M with the following modification. For each state $q \in F'$, we delete all its outgoing edges.
Formally, \(M' \) is an NFA such that \(Q' = Q, \Sigma' = \Sigma, q'_0 = q_0, F' = F \). Also \(\forall q \in Q, \forall a \in \Sigma, \) if \(q \notin F \) then \(\delta'(q, a) = \{ \delta(q, a) \} \), if \(q \in F, \delta'(q, a) = \emptyset \).

We claim \(M' \) decides NOPREFIX(A).

For each string \(s \in \text{NOPREFIX}(A) \), as \(s \in A \), it corresponds to a path \(P \) from \(q_0 \) to a state \(q_e \) in \(F \). On path \(P \), there is no other accept state except the last state \(q_e \). Otherwise, assume there is another state \(q_1 \in F \) which is not the last state on \(P \), then we can find a proper prefix of \(s \) which is also in \(A \), thus \(s \) is not in \(\text{NOPREFIX}(A) \). As a result, no edge on \(P \) is deleted. So \(s \) can be accepted by \(M' \).

On the other hand, let \(s \in L(M') \). There is a path \(P \) that corresponds to \(s \) in \(M' \), starting from \(q'_0 \) and ending at a state in \(F' \). According to the construction of \(M' \), we know \(P \) is also a path in \(M \) from \(q_0 \) to a state in \(F \). So we know \(s \in A \). Also as \(M \) is a DFA, \(P \) is the only path corresponding to \(s \) in \(M \). If there is another string \(s' \in A \) which is a proper prefix of \(s \), then by reading \(s' \), \(M' \) ends at an accept state \(q_1 \in F \) on \(P \). However, in \(M' \), \(q_1 \) has no outgoing edge, thus \(P \) can not be a path ending at an accept state in \(M' \). So there is no string \(s' \in A \) which is a proper prefix of \(s \). So \(s \in \text{NOPREFIX}(A) \).

As a result, \(M' \) recognizes \(\text{NOPREFIX}(A) \). So regular languages are closed under the NOPREFIX operation. \(\square \)

Problem 4

Answer. Consider the following grammar \(G \).

- \(S \rightarrow 0S1|1A|A0 \)
- \(A \rightarrow 1A|0A|\epsilon \)

Assume the complement of the language \(\{0^n1^n|n \geq 0\} \) is \(L \). We can see \(L \) is the union of the following three distinct languages.

- \(A = \{w| \text{There is a 1 before a 0 in } w\} \)
- \(B = \{w \in 0^*1^*| \text{There are more 1’s than 0’s in } w\} \)
- \(C = \{w \in 0^*1^*| \text{There are more 0’s than 1’s in } w\} \)

For every string \(s \) generated by \(G \), we show that it is in \(L \). When applying the grammar, we know that \(S \rightarrow 1A|A0 \) has to be conducted at least once. If \(S \rightarrow 1A \) is conducted, we can see \(s \in A \cup B \). If \(S \rightarrow A0 \) is conducted, we can see \(s \in A \cup C \). As a result, \(s \in L \).

On the other hand, we claim that \(A, B \) and \(C \) can all be generated by our grammar.

For \(A \), it can be generated by

- \(S \rightarrow 0S1|1A \)
- \(A \rightarrow 1A|0A|\epsilon \).

Because \(S \rightarrow 1A \) can generate the 1 that is before some 0’s and \(A \rightarrow 1A|0A|\epsilon \) can generate any string after that 1.

For \(B \), it can be generated by

- \(S \rightarrow 0S1|1A \)
- \(A \rightarrow 1A|\epsilon \).
Because we can use $S \rightarrow 0S1$ to generate enough 0's and use $S \rightarrow 1A$ and $A \rightarrow 1A|\epsilon$ to generate the extra 1's.

According to similar reasons, for C, it can be generated by
- $S \rightarrow 0S1|A0$
- $A \rightarrow 0A|\epsilon$

So A, B and C can all be generated by G. Thus G is the CFG for L.

\[\square\]