1. (20 points) Let HALT be the Halting language. Show that HALT is NP-hard. Is it NP-complete?

2. (20 points) Show that, if P = NP, then every language \(A \in P \), except \(A = \emptyset \) and \(A = \Sigma^* \), is NP-complete. Here \(\Sigma \) is the alphabet, and you may assume that it is \{0, 1\}.

3. (20 points) Let \(\phi \) be a 3CNF. An \(\neq \)-assignment to the variables of \(\phi \) is one where each clause contains two literals with unequal truth values.

 (a) Show that any \(\neq \)-assignment automatically satisfies \(\phi \), and the negation of any \(\neq \)-assignment to \(\phi \) is also an \(\neq \)-assignment.

 (b) Let \(\neq SAT \) be the collection of 3CNFs that have an \(\neq \)-assignment. Show that we obtain a polynomial time reduction from 3SAT to \(\neq SAT \) by replacing each clause

 \[c_i = (y_1 \lor y_2 \lor y_3) \]

 with the two clauses

 \[(y_1 \lor y_2 \lor z_i) \quad \text{and} \quad (\overline{z}_i \lor y_3 \lor b), \]

 where \(z_i \) is a new variable for each clause \(c_i \) and \(b \) is a single additional new variable.

 (c) Conclude that \(\neq SAT \) is NP-complete.

4. (20 points) Let DOUBLE-SAT = \{\(\phi | \phi \) is a CNF that has at least two satisfying assignments\}. Show that DOUBLE-SAT is NP-complete.

5. (20 points) A subset of the nodes of a graph \(G \) is a dominating set if every other node of \(G \) is adjacent to some node in the subset. Let

 \[\text{DOMINATING-SET} = \{ (G, k) | G \text{ has a dominating set with } k \text{ nodes} \}. \]

 Show that it is NP-complete by giving a reduction from VERTEX-COVER. You can assume that \(G \) has no vertex with degree 0.