1. (25 points) Let HALT be the Halting language. Show that HALT is \(\mathbf{NP} \)-hard. Is it \(\mathbf{NP} \)-complete?

2. (25 points) Call graphs \(G \) and \(H \) isomorphic if the nodes of \(G \) can be reordered so that the graph \(G \) is identical to \(H \). Let \(\text{ISO} = \{ \langle G, H \rangle | G \text{ and } H \text{ are isomorphic graphs} \} \). Show that \(\text{ISO} \in \mathbf{NP} \).

3. (25 points) Show that, if \(\mathbf{P} = \mathbf{NP} \), then every language \(A \in \mathbf{P} \), except \(A = \emptyset \) and \(A = \Sigma^* \), is \(\mathbf{NP} \)-complete. Here \(\Sigma \) is the alphabet, and you may assume that it is \{0, 1\}.

4. (25 points) Let \(\phi \) be a 3CNF. An \(\neq \)-assignment to the variables of \(\phi \) is one where each clause contains two literals with unequal truth values.

 (a) Show that any \(\neq \)-assignment automatically satisfies \(\phi \), and the negation of any \(\neq \)-assignment to \(\phi \) is also an \(\neq \)-assignment.

 (b) Let \(\neq \text{SAT} \) be the collection of 3CNFs that have an \(\neq \)-assignment. Show that we obtain a polynomial time reduction from 3SAT to \(\neq \text{SAT} \) by replacing each clause

 \[c_i = (y_1 \lor y_2 \lor y_3) \]

 with the two clauses

 \[(y_1 \lor y_2 \lor z_i) \text{ and } (\overline{z_i} \lor y_3 \lor b), \]

 where \(z_i \) is a new variable for each clause \(c_i \), and \(b \) is a single additional new variable.

 (c) Conclude that \(\neq \text{SAT} \) is \(\mathbf{NP} \)-complete.