1. (25 points) Prove that the following languages are not regular.
 (a) \(\{0^n1^m0^n+m|m, n \geq 0\} \).
 (b) \(\{w|w \in \{0, 1\}^* \text{ is not a palindrome}\} \). Here a palindrome is a string that reads the same forward and backward.

2. (25 points)
 (a) Let \(B = \{1^ky|y \in \{0, 1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for any } k \geq 1\} \). Is \(B \) a regular language? Prove your answer.
 (b) Let \(C = \{1^ky|y \in \{0, 1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for any } k \geq 1\} \). Is \(C \) a regular language? Prove your answer.

3. (25 points) Consider the language \(F = \{a^ib^jc^k|i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k\} \), where \(\Sigma = \{a, b, c\} \).
 (a) Show that \(F \) is not regular. **Hint:** Assume \(F \) is regular, use the closure properties of regular languages to convert \(F \) into another language, and show that language is not regular.
 (b) Show that \(F \) acts like a regular language in the pumping lemma. In other words, give a pumping length \(p \) and demonstrate that \(F \) satisfies the three conditions of the pumping lemma for this value of \(p \).
 (c) Explain why parts (a) and (b) do not contradict the pumping lemma.

4. (25 points) Give a context-free grammar that generates the following language, where the alphabet \(\Sigma \) is \{0, 1\}: \(\{w|w \text{ is not empty and starts and ends with the same symbol}\} \).