Problem 1

Answer. Consider the language \(L = \{1^{k-2}\} \).

First we give a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(L \), where \(|Q| = k \).

Let \(Q = \{q_0, q_1, \ldots, q_{k-1}\} \) and \(\Sigma = \{0, 1\} \).

The transition function \(\delta \) is defined as follows. Let \(\delta(q_i, 1) = q_{i+1} \) and \(\delta(q_i, 0) = q_{k-1} \), for \(i = 0, 1, \ldots, k-2 \). Let \(\delta(q_{k-1}, 0) = q_{k-1}, \delta(q_{k-1}, 1) = q_{k-1} \).

Let \(q_0 \) be the start state.

There is only one path from the start state to the accept state. The path is \((q_0, q_1, \ldots, q_{k-2}) \). So \(M \) can accept and only accept \(1^{k-2} \). This shows that \(M \) recognizes \(L \).

On the other hand, assume we have another DFA \(M' = (Q', \Sigma, \delta', q_0', F') \) which recognizes \(L \) but only has \(k-1 \) states. Let the sequence of states (path \(P \)), following \(M' \) reading \(1^{k-2} \), be \(p_0 = q_0', p_1, \ldots, p_{k-2} \) where \(p_{k-2} \in F' \). Consider \(q' = \delta(q_0', 0) \). We must have \(q' \neq \{p_0, p_1, \ldots, p_{k-2}\} \). Otherwise \(M' \) will accept another string which starts with a 0. Thus \(p_0, p_1, \ldots, p_{k-2} \in Q - \{q'\} \). As \(|Q - \{q'\}| = k-2 \), at least two of \(p_0, p_1, \ldots, p_{k-2} \) are equal. This shows that there is a cycle in \(P \). So \(M' \) accepts more than one string, contradicting that \(M' \) recognizes \(L \).

Problem 2

Answer. (a) Assume this language is \(L \) and it is regular. According to the pumping lemma, there exists a constant \(p \) such that \(\forall s \in L, |s| \geq p, s \) can be broke into three sub-strings \(s = xyz \) such that

- \(|y| > 0 \)
- \(|xy| \leq p \)
- \(\forall i \geq 0, xy^iz \in L \)

Let \(s = 0^p10^p \). So \(y = 0^l, 1 \leq l \leq p \). Consider \(xy^2z \). It should be in \(L \) according to the pumping lemma. However \(xy^2z = 0^{p+1}10^p, n_1 \neq p \). This is a contradiction. So \(L \) is not regular.

(b) Assume this language is \(L \) and it is regular. Let the pumping length of \(L \) be \(p \).

Consider the string \(s = 0^p10^p+p^l \). As \(p \neq p + pl \), \(s \) is not a palindrome. So \(s \) is in \(L \). By the pumping lemma, \(s \) can be broke into \(xyz \) where \(|xy| \leq p, |y| > 0 \). We know \(y = 0^l \) where \(i \) is an integer in \([1, p] \). Also by the pumping lemma, \(xy^pl+1z \) is in \(L \). However \(xy^pl+1z = 0^p+p^l10^{p+p^l} \) which is a palindrome. This is a contradiction.

As a result, \(L \) is not regular.

Problem 3

Answer. (a) Yes. We show that \(B = L \) where \(L = 10^*1(0|1)^* \). For every \(s \in B \), let \(s = 1^k \). If \(k = 1 \), we know \(y \) has at least one 1. So \(y \in 0^*(10|1)^* \). Thus \(s \in L \). If \(k \geq 2 \), \(1^k \) is in \(10^*1(0|1)^* \) and \(y \) is in \((0|1)^* \). So \(s = 1^k y \in L \). On the other hand, for any \(s \in L \), as \(s \) starts with a 1, \(s \) can be viewed as \(1y \) where \(y \in 0^*(10|1)^* \). Thus \(y \) contains at least one 1. According to the definition of \(B \), \(s \in B \). So \(L = B \).
(b) No. We use the pumping lemma. Let p be the pumping length of C. Let $s = 1^p01^p \in C$. By the pumping lemma, $s = xyz$ where $|xy| \leq p$. So $y = 1^l$ for some $l \in [1, p]$. By the pumping lemma, $xz \in C$. However, xz does not have the form $1^k a'$ with a' has at most k' 1's. So C is not regular.

Problem 4

Answer. (a) The grammar is as follows.

- $S \rightarrow 0A0|1A1$
- $A \rightarrow A0|A1|\epsilon$

(b) The grammar is as follows.

- $S \rightarrow 0S0|1S1|0|1|\epsilon$

Problem 5

Answer. The grammar is as follows.

- $S \rightarrow 0S0|1S1|A$
- $A \rightarrow 0B1|1B0$
- $B \rightarrow 0B0|0B1|B0|B1|\epsilon$

First we prove that every string $w = w_0w_1\cdots w_{n-1}$ generated by the grammar is in D.

Notice that for every rule in the grammar, the number of terminals in the right hand side is even. As a result, w has even length. Assume $w = xy$. In the procedure of generating w, the rule $A \rightarrow 0B1|1B0$ has to be applied for at least once. This means that there exists an index $i < n/2$, such that $w_i \neq w_{n-1-i}$. Thus $x \neq y^R$. So $w \in D$.

Next we prove that every string w in D can be generated by the grammar.

According to the definition of D, there exists an index $i < n/2$, such that $w_i \neq w_{n-1-i}$ and $\forall j \leq i-1, w_j = w_{n-1-j}$. We give a process generating w following the rules in our grammar. We generate the first $i-1$ characters and the last $i-1$ characters of w following $S \rightarrow 0S0|1S1$. This can be done because by following $S \rightarrow 0S0|1S1$, for every string u, we can get uSu^R. Then we apply the rule $S \rightarrow A$ and $A \rightarrow 0B1|1B0$ to generate w_i and w_{n-1-i}. After that we generate the remaining bits of w by following $B \rightarrow 0B0|0B1|B0|B1|\epsilon$. This can be done because any even length string can be generated by following $B \rightarrow 0B0|0B1|B0|B1|\epsilon$. As a result, w can be generated by our grammar.

This shows that D is a context-free language.