1. (25 points) Give an NFA (both a state diagram and a formal description) recognizing the language \(0^*1^*0^+\) with three states. The alphabet is \{0, 1\}. You don’t need to have a formal proof.

2. (25 points) This question studies the number of states in a DFA equivalent to an NFA. Recall that in class we showed an NFA with 4 states that recognizes the language which consists of all binary strings that have a 1 in the third position from the end. For any integer \(k\), it is easy to generalize this construction to an NFA with \(k + 1\) states that recognizes the language which consists of all binary strings that have a 1 in the \(k\)'th position from the end. The general transformation from an NFA to a DFA will give us a DFA with at most \(2^{k+1}\) states recognizing the same language.

Show that, any DFA that recognizes the same language must have at least \(2^k\) states.

Hint: start by looking at the following two strings: \(10^{k-1}\) and \(0^k\). Observe that when a DFA takes them as inputs, it must end up at different states, since one string is accepted and the other is rejected.

3. (25 points) Say that string \(x\) is a prefix of string \(y\) if a string \(z\) exists where \(xz = y\) and that \(x\) is a proper prefix of \(y\) if in addition \(x \neq y\). Let \(A\) be a regular language. Show that the class of regular languages is closed under the following operation.

\[
\text{NOEXTEND}(A) = \{w \in A | w \text{ is not the proper prefix of any string in } A\}
\]

Hint: Think about when a string \(w \in A\) can be the proper prefix of another string in \(A\), then modify the states of the machine to avoid this.

4. (25 points) Let \(\Sigma = \{0, 1\}\).

(a) Write a regular expression for the language \(L\) consisting of all strings in \(\Sigma^*\) with exactly one occurrence of the substring 111.

(b) Write a regular expression for the language \(L\) consisting of all strings in \(\Sigma^*\) that do not end with 10.

You don’t need to have a formal proof.