Problem 1

Answer. The NFA \(M = (Q, \Sigma, \delta, p_0, F) \) is as follows.

\[
\begin{array}{c}
0 \\
p_0 \\
\epsilon \\
p_1 \\
1 \\
p_2 \\
0
\end{array}
\]

Here \(Q = \{p_0, p_1, p_2\} \), \(\Sigma = \{0, 1\} \).

The transition function \(\delta \) is as follows.

\- \(\delta(p_0, 0) = \{p_0\}, \delta(p_0, 1) = \emptyset, \delta(p_0, \epsilon) = \{p_1\} \).
\- \(\delta(p_1, 0) = \{p_2\}, \delta(p_1, 1) = \{p_1\}, \delta(p_1, \epsilon) = \emptyset \).
\- \(\delta(p_2, 0) = \{p_2\}, \delta(p_2, 1) = \emptyset, \delta(p_2, \epsilon) = \emptyset \).

The start state is \(p_0 \).

The set of accept states is \(F = \{p_2\} \).

Problem 2

Answer. As \(A \) is regular, there is a DFA \(M' = (Q, \Sigma, \delta, p_0, F') \) that recognizes NOEXTEND\((A)\). Notice that \(M' \) and \(M \) are only different in their sets of accept states.

We define \(F' \subseteq F \) as follows. For every state \(p \in F \), \(p \) is in \(F' \) if and only if \(\forall q \in F \) (including the case \(q = p \)), there is no path from \(p \) to \(q \) in the diagram of \(M \).

Next we prove that \(M' \) recognizes NOEXTEND\((A)\).

For every string \(x \in \text{NOEXTEND}(A) \), according to the definition of NOEXTEND\((A)\), we know \(x \in A \). By reading \(x \), starting from \(p_0 \), \(M \) ends at a state \(u \in F \). As \(x \) is not the proper prefix of any string in \(A \), there is no path from \(u \) to any \(q \in F \) in the diagram of \(M \). So \(u \in F' \). As a result, \(x \) is accepted by \(M' \).

For every string \(x \) that is accepted by \(M' \). Starting from \(p_0 \), following \(x \), \(M' \) ends at a state \(u \in F' \). Since \(F' \subseteq F \), we have \(x \in A \). Suppose \(x \) is a proper prefix of a string \(y \in A \). Assume \(y = x \circ z \). As \(y \in A \), starting from \(u \), following \(z \), \(M \) ends at a state \(q \in F \). However this contradicts the definition of \(F' \). So \(x \) is not a proper prefix of any string in \(A \). So \(x \in \text{NOEXTEND}(A) \).

This proves that \(M' \) recognizes NOEXTEND\((A)\).
Problem 3

Answer. According to the definition of regular languages, it is sufficient to show that there exists a DFA M that recognizes C_n.

Let $M = (Q, \Sigma, \delta, q_0, F)$. Here $Q = \{0, 1, 2, \ldots, n - 1, q_0\}$. Each state except q_0 in Q corresponds to a possible residue of $x \mod n$. As there are n different residues for $x \mod n$, so the number of states is $n + 1$.

Let $\Sigma = \{0, 1\}$.

The start state is q_0.

For the transition function, $\forall q \in Q - \{q_0\}$ and $\forall c \in \Sigma$, we have $\delta(q, c) = (2q + c) \mod n$. Also $\forall c \in \Sigma, \delta(q_0, c) = c \mod n$.

The accept state is the 0 state.

Next we prove that M recognizes C_n.

For an input x, if it is a multiple of n, then we can find a corresponding path P in the graph of M. This path corresponds to a procedure of doing the modular operation and the final state is exactly the result of $x \mod n$. The first state of P is q_0. The ith state in P is $\bar{x}_{i-1} \mod n$, for $i = 2, \ldots, |x| + 1$, where \bar{x}_i is the first i bits of x. $|x|$ is the length of x. So P finally reaches the accept state 0.

For a string x accepted by M, there is a path P corresponding to it. We know that P ends at an accept state. As P corresponds to a procedure of computing $x \mod n$ and the residue is 0, x is in C_n.

This proves that M recognizes C_n.

\[\square\]

Problem 4

Answer. We construct a DFA M such that the language L, which is the perfect shuffle of A and B, is recognized by M.

Assume the DFA that recognizes A is $M_A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$. The DFA that recognizes B is $M_B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$.

Let $M = (Q, \Sigma, \delta, q_0, F)$.

Each state of M is represented by a 3-tuple (x, y, z), where x is a state of M_A. y is a state of M_B and z is a binary bit. Let $z = 0$ indicate that M is supposed to read an a_i. Let $z = 1$ indicate that M is supposed to read a b_i. So $Q = Q_A \times Q_B \times \{0, 1\}$.

Σ is exactly the Σ given in the description of the problem.

At any state $(x, y, 0)$, consider the state x of M_A. For each outgoing edge of x, we construct a corresponding outgoing edge of $(x, y, 0)$. If $\delta_A(x, a_e) = x'$, then $\delta((x, y, 0), a_e) = (x', y, 1)$. That is, $\delta((x, y, 0), a_e) = (\delta_A(x, a_e), y, 1)$.

At any state $(x, y, 1)$, consider the state y of M_B. For each outgoing edge of y, we construct a corresponding outgoing edge of $(x, y, 1)$. If $\delta_B(y, b_e) = y'$, then $\delta((x, y, 1), b_e) = (x, y', 0)$. That is, $\delta((x, y, 1), b_e) = (x, \delta_B(y, b_e), 0)$.

The start state is $q_0 = (q_{A0}, q_{B0}, 0)$.

The accept states are the states $(x, y, 0), \forall x \in F_A, \forall y \in F_B$. That is, $F = F_A \times F_B \times \{0\}$.

For any $w = a_1b_1 \cdots a_kb_k \in L$, we can find a path P in M composed of the series of edges: $a_1b_1 \cdots a_kb_k$. The final state of P is an accept state. The reason is as follows. Assume that by reading w, M ends at a state $(x, y, 0)$. We know that $a_1a_2 \cdots a_k \in A$ and $b_2b_2 \cdots b_k \in B$. This means that by reading $a_1a_2 \cdots a_k$, M_A ends at a state in F_A. Also by reading $b_1b_2 \cdots b_k$, M_B ends at a state in F_B. So according to our construction, we have $x \in F_A$ and $y \in F_B$. So $(x, y, 0) \in F$.

2
On the other hand, if P is a path in M from the start state to an accept state, assuming the ith edge is P_i, $i = 1, 2, \ldots, 2k$, we know from the construction that if i is odd, then P_i corresponds to an edge in M_A. What’s more, P_1, P_3, \ldots, P_k form a path which starts at the start state of M_A and ends at an accept state of M_A. If i is even, we can find out that P_2, P_4, \ldots, P_{2k} form a path which starts at the start state of M_B and ends at an accept state of M_B. So the string corresponding to P is in L.

So the perfect shuffle of A and B is recognized by M. Thus the class of regular languages is closed under perfect shuffle.

\[\square\]

Problem 5

Answer. Assume the DFA that recognizes A is $M_A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$. The DFA that recognizes B is $M_B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$.

Next we construct an NFA M that recognizes the shuffle of A and B. Let $M = (Q, \Sigma, \delta, q_0, F)$.

Let $Q = Q_A \times Q_B$.

For every $x \in Q_A$, every $y \in Q_B$ and every $c \in \Sigma$, $\delta((x, y), c) = \{(\delta_A(x, c), y), (x, \delta_B(y, c))\}$. For every $x \in Q_A$, every $y \in Q_B$, $\delta((x, y), \epsilon) = \emptyset$.

Let $q_0 = (q_{A0}, q_{B0})$.

Let $F = F_A \times F_B$.

For any $w = a_1b_1\cdots a_kb_k, a_1\cdots a_k \in A$ and $b_1\cdots b_k \in B, a_i, b_i \in \Sigma^*$, there is a path in M starting from the start state and ends at an accept state. The path is $a_i, b_i, \cdots, a_k, b_k$. The path ends at an accept state because for the entire string $a_1a_2\cdots a_k, M$ uses the first transition rule (according to δ_A) and for the entire string $b_1b_2\cdots b_k$, M uses the second transition rule (according to δ_B). So w is accepted by M.

For any string w that is accepted by M, assume w corresponds to a path P in M. Assume the final state of P is $(q_1, q_2) \in F_A \times F_B$. We construct the following two strings a and b. At first, let $a = b = \epsilon$. For every $i = 1, 2, \ldots, |w|$, if the edge w_i in P goes from (x, y) to (x', y) such that $\delta_A(x, w_i) = x'$, then we pad w_i to a; else we pad w_i to b. As a result, we can see that starting from q_{A0}, following a, M_A ends at the state $q_1 \in F_A$. Also starting from q_{B0}, following b, M_B ends at the state $q_2 \in F_B$. So w is in the shuffle of A and B.

So M recognizes the shuffle of A and B. Thus the class of regular languages is closed under shuffle.

\[\square\]