You may email or hand in your homework to either the TA or me. You do not need to write the exact description of a Turing machine. Just describe what the TM does in your words.

1. (20 points) Prove that the following languages are not regular.
(a) $\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$
(b) $\left\{0^{m} 1^{n} \mid m \neq n\right\}$
2. (20 points)
(a) Let $B=\left\{1^{k} y \mid y \in\{0,1\}^{*}\right.$ and y contains at least $k 1 \mathrm{~s}$, for any integer $\left.k \geq 1\right\}$. Show that B is a regular language.
(b) Let $C=\left\{1^{k} y \mid y \in\{0,1\}^{*}\right.$ and y contains at most $k 1 \mathrm{~s}$, for any integer $\left.k \geq 1\right\}$. Show that C is not a regular language.
3. (20 points) Define a two-dimensional Turing machine to be a TM where each of its tapes is an infinite grid (and the machine can move not only Left and Right but also Up and Down). Show that for every (time-constructible) $T: \mathbb{N} \rightarrow \mathbb{N}$ and every Boolean function f, if f can be computed in time $T(n)$ using a two-dimensional TM, then it can also be computed by a standard (one-dimensional) TM in time $O\left(T(n)^{2}\right)$. Note: You may assume that the tapes of the two-dimensional TM start at $(0,0)$ and can only access points with non-negative integer coordinates.
4. (20 points) Let $T=\left\{\langle M\rangle \mid M\right.$ is a TM that accepts α^{R} whenever it accepts $\left.\alpha\right\}$. Show that T is undecidable. Note: α^{R} is the reverse string of α. You may assume the alphabet is $\{0,1\}$.
