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Abstract

Image registration/video mosaicing can be computed by the intensity difference minimization between two
images. The image appearance changes are normally caused by images taken under different viewpoints.
Families of spatial transformations are used to compensate for the difference. Different sensors and different
illumination conditions can also change image intensities [19, 10]. Mutual information based algorithm is
successfully employed to register multi-modal image [47]. In [19, 30], Linear sub-space modelling is used to
compute the illumination difference.

By stitching a sequence of image frames, we can get a mosaic for the broader field of view. Image mosaic
is a very useful visual representation for the 3D world scene [27], medical imaging [8] and so on.

There are mainly two approaches to treat image regions, as direct observation measurements in [4, 19, 28,
30, 40], or feature base criterion in [5, 8, 9, 14, 42]. In this paper, we propose a closed form solution based on
the linear least-squares method to compute the parametric warping between images. Consequently, the local
image intensity differences are approximated as a linear combination of parametric texture warping templates.
Further more, we extend the parameterized warp models in [19] from translation, affine transformation to full
perspective transformation or quadratic transformation by the requirement of different applications.

To accelerate the calculation of Jacobian matrix, we discuss the selectivity of image pixels in template
matching. Some real image sequence mosaicing results under different parametric models are shown in this
paper and they are processed in real-time. Performance analysis with different parametric models and different
scenario are given in detail.

We also try to review some new and significant techniques about image registration after Brown’s work [6].
Based on these, several potential important research directions are pointed out as future works.
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1 Introduction

Image registration/alignment for video mosaicing has many research and real applications. Based on the defi-
nition in [6], there are two kinds of image distortions needed to be handled in registration. The first type is the
distortion that cause the misalignment which can be minimized by the parametric transformations with fitting
coefficients. Non-parametric warping is more suitable, when the scenario is very complex and can not be well
presented by the parametric warping. For instance, a patch based optical flow algorithm [40] can be used to
find the relative disparities of image features, then the disparities of neighboring pixels can be interpolated.
The second type of distortion is not the source of spatial misalignment, but make the registration more difficult.
This distortion is the outlier in the registration procedure, according to the first one. For example, occlusions or
expressional deformations in template based face tracking [19] belong to the second distortion. The iteratively
reweighted least squares (IRLS) technique1 [19, 49] can be used in conjunction with the image gradient to deal
with non-rigid motions and occlusions. This approach decouples the above two types of distortions and solve
them in a sequential manner. After the global face motion is tracked or stabilized, eye blinking and mouth
motions are then detected [20].

From the viewpoint of image appearance measurement, there are basically two kinds of methods to compute
the registrations between successive images or the locations of live frames on the reference imagery. Different
images can be stitched together by the certain kind of warping transformations to compensate for the visual
motion disparity. Direct approaches [4, 19, 28, 30, 40] use all the image pixels available to compute the image
gradient and Jacobian matrices for registration. No corner feature or edge detection is required. The SSD (Sum
of Square Differences) error is minimized with a closed form solution from a set of over-determined linear
equations. In theory, no iteration is necessary. However, the estimated parameters can be refined locally in an
iterative manner, by considering the imperfection of spatial transformation modelling for visual motions and
nonlinear image noises. On the contrary, some researchers [5, 8, 9, 14, 42] prefer to first detect certain corner-
like or edge-like features2 from images, then optimize the registration parameters by finding the corresponding
spatial relations between image feature pairs in different camera views. By considering the image noises and
mismatches, many of robust estimators (for example, Ransac [42, 9], M-estimator [50, 8], MLESAC [43]
and IMPSAC [45]) are used in the feature based matching algorithms. As a trade-off, a mixture approach is
employed in the work of video alignment between ariel images and the reference imagery [48, 26, 24]. Image
edge-like features are firstly aligned, then their neighboring image regions are used as supporting areas to
minimize the according SSD errors.

There are some cases where image intensity based registration is unavailable. For example, alignment of
two non-overlapping image sequence, images captured by different sensor sources, or under different illumi-
nation conditions [10], register the 3D model with the reference image [47] are all need some other coherent
information to be discovered from the successive image frames. In [10], two non-overlapped image sequences
are aligned together using their camera’s correlated temporal motion, assuming that the two cameras are bound
together. The coherent appearance requirement among images in the standard registration algorithms is re-
placed by the constraint of the coherent temporal behavior of the two image sequences which is obtained by
Homography or Epipole constraints [23] for the planar or non-planar scenes respectively. This technique can
also be applied to significant zooming images or multi-sensor images. From an information-theoretic view,
entropy based similarity criterion can be employed to align two object representations from different imaging
sources, for example, to register a 3D model with a sequence of 2D images [47]. No direct appearance match-

1A well-known optimization of robust estimation.
2These kinds of feature can be detected from whether there exists 1 or 2 significant large eigenvalues, after the SVD decomposition

[17] from the covariance matrices of the image intensities [38]. The most popular point feature is Harris corner feature [21].
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ing exists between 3D and 2D object representations, but mutual information with the model and the image can
be formulated as the similarity definition for alignment. Actually, the mutual information is found to be maxi-
mized when the two different imaging presentation is correctly registered. This approach is based on stochastic
approximation3, which can be efficiently implemented and provides a robust solution for tracking with clutters
and occlusions.

For the mathematical formulation, the image registration methods can be classified as parametric or non-
parametric approaches. In projective geometry theory [16, 23], there exist two kinds of Homography matrices
for the planar scenes or stationary camera with pure rotations [22]. When the scene is observed by the camera
from a certain distance4, affine transformation model can be near perfectly used to approximate the relative
motions between two camera views. In the influential paper [19] for parametric tracking, mostly translation
model and affine motion model are explored for the planar surface tracking. The Jacobian matrices are derived
from the explicit parametric motion patterns. In [30], full 3D face tracking5 are considered, thanks to a cylinder
head model. The motion vectors are obtained from image intensity changes by local disturbances of warping
parameters6. On the other side, Joint View Triangulation (JVT) [35] is a typical non-parametric algorithm
for image registration and rendering. JVT interpolates the inter-frame visual motions of unmatched image
pixels from their semi-dense matched neighbors via the triangle-based texture mapping. All unmatched image
portions are automatically segmented as triangles, and each triangle is bounded by three of their matched image
feature neighbors via Delaunay triangulation [34].

Visual motions among different image frames in a video sequence are strongly correlated with the camera’s
motion trajectory (called ego-motion) and the complexity of observed scenes. If the camera motion is geo-
metrically constrained with high precision, the mosaicing task can be performed without explicitly computing
the inter-frame visual motions from image observations [39, 33]. A high resolution mosaic (called concentric
mosaics [39]) can be generated from the dense sampled plenoptic function [32] captured by a smooth panning
video camera. The camera is explicitly calibrated by the well-controlled robotic motions. The final mosaic is
composed of hundreds of vertical slots extracted from captured image frames. The index7 of the slot can be
determined by the spatial order between the current rendering viewpoint and camera positions in the image
capture circle, which can be read from the image frame number. Furthermore, other non-perspective repre-
sentations of mosaics, ie. parallel projected camera views can be obtained by rebinning a large sequence of
perspective images [11]. A similar For more general types of camera motions, the methodology of mosaicing
on adaptive manifolds is proposed in [33]. Mosaicing is performed by projecting thin strips from the images
onto manifolds which are adapted to the camera motion. The collected strips should be warped to make the
resulting optical flow parallel to the direction in which the mosaic is constructed. The use of more general man-
ifolds overcomes the limitations of camera motions; the use of thin strips is easy to handle the lens distortion,
motion parallax and moving objects.

We define our problem as building an image mosaic online from a sequence of video images of planar
or quadratic scene with a freely moving camera. The surface can be an approximation of a scene which has
insignificant parallax by camera motion. Particularly, one important application of our work is retina image

3A superposition of Gaussian densities with Parzen Windows algorithm [15] is used to sample the underling distributions. Besides
Gaussian density, any differentiable function could be used to present the distribution. Another good choice is the Cauchy density. On
the other hand, non-parametric representation, like histogram, is also in effect here. See the detail analysis in [13].

4Empirically, when the distance ratio between the object depth and object width is equal or above 6, affine camera model can be
successfully employed.

5Totally, LaCascia et al. track the head motions with six degrees of freedom, three rotations and three translations.
6Here, the calculation of motion vector is according to the Jacobian matrix computation in [19], but is a little bit of less strict in

mathematics. The scale of local disturbances is hard to be determined. An adaptive scale estimation algorithm is analyzed in [7].
7The index is composed of the frame number of image and the slot’s vertical position in the image.
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mosaicing for eye surgery. Age-related macular degeneration is a set of vascular disorders on the human retina.
This leads to loss of sight, and in some cases to legal blindness. Laser and radiation treatment is normally
not quite effective. The eye surgery plan is insert micro-surgical tools into the lumen of a retinal blood vessel,
inject therapeutic agents or remove the excess vascularity, with a part of the retina, preserving the fovea. Our
task is to assist the micro-surgical procedure by providing a real-time registration between an intra-operative
microscopic image, and a pre-operative angiographic image of the retina. The latter can be used to make a
surgical plan. with the registration established, the microscopic images can be overlaid on the plan or other
important pre-operative data, enhancing the surgeon’s view of the procedure [37].

In this paper, we built a hierarchical and adaptive framework for real-time video registration/mosaicing by
extending [19] from 4 parameters without out-of-plane rotation, to 6 or 8 parameter full 3D motion or even 12
parameter quadratic motion models in an incremental order. This adaptive warping model enables us to deal
with more complex surfaces and more general camera motions. Another contribution of this paper is that we
propose a simple but efficient rule to select part of image pixels that make the most significant contribution
of optimization in Jacobian matrix. We describe our paper as follows. In section 2, our video registration
framework is presented. Real video sequences are shown in section 3 to demonstrate the validity of our method,
and we conclude this paper in section 4.

2 Mathematical Formulation of Parametric Warping for Video Registration

In this section, we first describe the general framework of parametric motion estimation [19]. Then, we discuss
our adaptive parametric warping implementation with a course-to-fine hierarchical framework.

2.1 Parametric Motion Estimation

Let x = (x, y)T denote a pixel coordinates in the image plane. LetI(x, t) be the intensity value for image pixel
x in imageI taken at timet. The gray-level image gradient at the image pointx is denoted by5xI(x, t). A
target regionI with N image points is defined as

I = {x1, x2, · · · , xN}

Let f be a 2D-2D transformation relation:f : <2 7→ <2, which is parameterized by the coefficient vectorµ,
therefore,f (x;µ(t)) denotes the parametric motion of each image pixelx in terms ofµ(t) with m components.
Normally, µ(t) is a set of time variant parameters that need to be estimated in real-time in our task. The
transformation, sometimes called warping, can be expressed as

u = (u, v)T = f(x; µ)

With the intensity constancy constraint[25], we have the following equation (1)

I0(x, t0) = I(f(x; µ(t)), t) (1)

WhereI0 is the reference frame taken at timet0, I is another image taken at timet, and the relative transfor-
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mation isµ(t). For a certain image regionI, we denote its pixel intensities using a vector as

I(µ, t) =




I(f(x1;µ(t)), t)
I(f(x2;µ(t)), t)

...
I(f(xN ; µ(t)), t)




where N is the pixel size ofI. By making the constant intensity assumption, the motion of image pixels can be
represented in terms of their spatial and temporal derivatives.

I(µ + δµ, t +4t) = I(µ, t) + M(µ, t)δµ +4tI t(µ, t) + h.o.t (2)

The above linearization is carried out by expandingI(µ + δµ, t +4t) into a Taylor series ofµ andt. I t(µ, t)
is the partial derivatives ofI with respect to the component of the time parametert, and is written as

I t(µ, t) =




It(f(x1; µ(t)), t)
It(f(x2; µ(t)), t)

...
It(f(xN ; µ(t)), t)




M is the Jacobian matrix ofI with respect toµ, which is aN ×m matrix of partial derivatives.

M(µ, t) =
(
Iµ1(µ(t), t) Iµ2(µ(t), t) . . . Iµm(µ(t), t)

)
(3)

Iµi(µ, t) =




Iµi(f(x1; µ(t)), t)
Iµi(f(x2; µ(t)), t)

...
Iµi(f(xN ; µ(t)), t)




From the intensity constant constraint, the motion parameter vector of the target region can be estimated at
time t by minimizing the following least squares error function

e(µ, t) =
∑

x∈<
(I(f(x; µ(t)), t)− I0(x, t0))2 (4)

By substituting (2) into (4) and ignoring the higher order terms, we obtain

e(µ, t) ≈‖ I(µ, t) + Mδµ + I t(µ, t)4t− I(0, t0) ‖2 (5)

With the additional approximationI t(µ, t)4t ≈ I(µ, t +4t)− I(µ, t), (5) becomes

e(µ, t) ≈‖ Mδµ + I(µ, t +4t)− I(0, t0) ‖2 (6)

In this equation,I(µ, t +4t) − I(0, t0) can be considered as the distortion errors of warping the imageI t+4t

at timet +4t with the former parametersµt to I(0, t0). δµ is the vector of offsets ofµt, to compensate for the
above warping errors. Solving equation (6) in a linear least squares manner, we have

δµ = −(MT M)−1MT (I(µ, t +4t)− I(0, t0)) (7)
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provided the jacobian matrixM is full rank. After this, the new set of warping parameters is updated from

µ(t +4t) = µ(t) + δµ (8)

Most importantly, the construction of Jacobian matrixM is the critical problem. According to the partial
derivative definition, each element of this matrix is given by

mij = Iµj(f(xi;µ), t) = ∇f I(f(xi;µ), t)T fµj(xi;µ) (9)

where∇f I is the gradient ofI with respect to the components of the motion modelf. Unfortunately, this
gradient can not be computed directly. By differentiating both sides of 1, we get

∇xI(x, t0) = fx(x; µ)T∇f I(f(x; µ), t) (10)

wherefx is the2× 2 Jacobian matrix off treated as a function ofx = (x, y)T ,

fx(x; µ) = [
∂f(x; µ)

∂x
|∂f(x; µ)

∂y
]

Combining 9 with 10, we find thatM can be written as

M(µ) =




∇xI(x1, t0)T fx(x1; µ)−1fµ(x1; µ)
∇xI(x2, t0)T fx(x2; µ)−1fµ(x2; µ)

...
∇xI(xN , t0)T fx(xN ;µ)−1fµ(xN ;µ)


 (11)

Further more, suppose that we can choosef so thatf−1
x fµ can be factored into the product of a2 × k matrix Γ

which depends only on image coordinates, and ak ×m matrixΣ which depends only onµ as

fx(x; µ)−1fµ(x; µ) = Γ(x)Σ(µ) (12)

As a result, we substitute (12) into (11), and obtain

M(µ) =




∇xI(x1, t0)T Γ(x1)
∇xI(x2, t0)T Γ(x2)

...
∇xI(xN , t0)T Γ(xN )


Σ(µ) = M0Σ(µ) (13)

Recently, Baker and Matthews survey the image alignment algorithms and classify them into four cate-
gories [2]. The additive approach estimates an additive increment to the parameters [31], while compositional
approach compute an incremental warp instead [40]. Hager and Belhumeur’s algorithm is considered as the
inverse additive method because they invert the role of the image and the template to achieve very efficient
performance. Baker and Matthews proposed a image alignment method called the inverse compositional algo-
rithm by considering the computational efficiency and wider class of warps than linear warps in [19]. We refer
their paper [2] for more details. More interestingly, our mosaicing task is different with the template image
tracking in [19, 2]. In our case, we have local warping between current successive image frames whose initial
warping is represented by a identical matrix. It always avoids the various Jacobian matrices in iterations and
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save the computing power. For the global warping among live frames respective to the whole mosaic, incre-
mental warping is used. For affine or perspective transformations, the warps form a semi-group where only
the multiplication of 2 warping matrices are needed to obtain the final warp. In short, we use inverse additive
approach for local warps and compositional approach for global warps8. Because we always need to calculate
the overlapping region at first for each iteration with updated parameters and then compute the motion vectors
based on it, inverse compositional method can not help us to fix the Jacobian matrix during iterations. In our
task, compositional or inverse compositional method does not effect differently.

2.2 Case Study: Real-time Video Mosaicing with Adaptive Parametric Warping

According to our applications, we apply an adaptive framework for the parametric motion estimation. Each
building block of the mosaicing process is to register two images. It consists of several steps, and each refines
the alignment result of the previous one by adding more parameters into the warping matrix. The number of
steps is adaptive to the current warped image difference, or residues. If the residues can not be small enough
with the low order warping model, higher order warping is activated for the further compensation.

2.2.1 Phase Correlation for Translation Estimation

First of all, a cross correlation based algorithm is used for estimation of 2D translationdx anddy in the image
coordinates. We use a phase correlation algorithm in [29]. Phase correlation is a frequency domain motion
measurement method that makes use of the shift property of the Fourier transform - a shift in the spatial domain
is equivalent to a phase shift in the frequency domain. From theoretic analysis, phase correlation is based on
the evaluation of the phase of the Cross Power Spectrum (CPS). Therefore the phase correlation is formulated
as :

F1(ζ, η) ∗ F ∗
2 (ζ, η)

| F1(ζ, η) ∗ F ∗
2 (ζ, η) | = ej2π(ζx0+ηy0) (14)

wherex0, y0 are the translational offset of image 1 and image 2,F1(ζ, η) andF2(ζ, η) denote the the Fourier
transforms of the two images. Normally, there are some high order spatial distortions between these two image,
besides translations. Phase correlation is used as the initial alignment for the higher level warping, according
to its computational efficiency by avoiding the brute-force search for correlation.

(a) (b)

Figure 1: Two images used for the
translational motion estimation by
phase correlation : (a) image01 (b)
image02

8Though we do not call our methods as the names in [2], basically they have the similar functions. Our special 4 parameter affine
transformation and 6 parameter perspective transformations in local warps are described in section 2.2.2.
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Figure 2: The translational motion estimation with phase correlation.

The two images shown in Figure 1 are used to demonstrate the validity of phase correlation. Clearly, there
are not only the translational transformation, but more complex distortions existed between these two images.
However, the translation values in X-Y direction are discovered as a distinguished peak from the 2D response
function shown in Figure 2.

2.2.2 Optimization Formulation and Jacobian Matrix Computation

The basic warping function is the transformation between corresponding pixels of two images. Thenf (x;µ(t))
can be expressed by matrix multiplication (15). Assuming the surface is planar or pure rotational camera
motion, we have

λ




u
v
1


 = W




x
y
1


 (15)

where(u, v) is the pixel coordinates of a physical point projected in the first image, and(x, y) is the pixel
coordinates of its projection in the second image. Here we take the first image as the anchor image for others
to be aligned.λ is a scaling factor andW is a parameterized3× 3 matrix presented the parametric warping.

If we only consider scales and in-plane rotationθ in addition todx anddy, which are corresponding to 3
dimension translations and rotation around Z axis of the camera, the 4 parameter warping matrix is

Wa =




s cos θ −s sin θ dx

s sin θ s cos θ dy

0 0 1


 (16)

We denote this as the affine warping.

A more general form of warping transformationW is

Wp =




s cos θ −s sin θ dx

s sin θ s cos θ dy

α β 1


 (17)
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with two extra parameters to represent the image shearing deformation caused by out-of-plane rotations. In
other words, more freedom of motion is allowed. We found thatWp is a good approximation of the standard
homography transformation (8 parameters with 2 extra constraints) ofW and often leads to more stable results.

With two out-of-plane rotations added,W has another formulation as follows.

Wp =




sx cos θ −sx sin θ dx

sy sin θ sy cos θ dy

h −h 1


 (18)

Here we replaces with x-scaling parametersx and y-scaling parametersy, and add a shearing parameterh to
meet the two extra degree of freedom. Equations (17) and (18) are considered as alternative formulations of the
perspective warping we called. In the following analysis, we take (17) as our instance.

For quadratic surfaces, we approximate the warping as:

(
u
v

)
=

(
w11w12w13w14w15w16

w21w22w23w24w25w26

)




x
y
1
xy
x2

y2




(19)

Let p be the vector of warping parameters (for example,(dx, dy, s, θ)T ), U = (u, v)T , andX = (x, y)T ,
superscripts indicate the number of image points,

e = (I1(U (1)(p))− I2(X(1)), . . . , I1(U (n)(p))− I2(X(n)))T

The key equation for optimization in our framework is to compensate the misalignment error by the incre-
ments of warping parameters.

−J(p∗ − p) = −Jδp = e (20)

The goal of minimizing||e|| can be achieved byp∗ = p − (JT J)−1JT e, given an initial close estimate of
p, whereJ = (J (1), . . . , J (n))T and

J (i) =
∂I1

∂p
=

∂I1

∂U (i)

∂U (i)

∂p
(21)

The ∂I1
∂U part of the Jacobian matrixJ is the image gradient9, and the∂U

∂p part can be derived fromW .

Compared with Equation (11), we do not need to calculatefx(x; µ)−1, because we pre-warp the image to make
this item equal to 1. This process simplifies the computation for parameter updating, but theδp is only valid
locally. The global parameter updating is achieved by the multiplication of warping matrices, not directly
throughδp. In the 4 parameter case, for example,

u = s cos θx− s sin θy + dx

v = s sin θx + s cos θy + dy

9The image gradient can be computed by image gradient operators very easily.
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∂U

∂p
|dx=0,dy=0,s=1,θ=0 =

(
1 0 x −y
0 1 y x

)
(22)

wherep = (dx, dy, s, θ)T is the parameter vector. For 6 or 12 parameters, we can get Jacobian similarly.
According to equation 17, we have

u =
s cos θx− s sin θy + dx

αx + βy + 1

v =
s sin θx + s cos θy + dy

αx + βy + 1

∂U

∂p
|dx=0,dy=0,s=1,θ=0,α=0,β=0 =

(
1 0 x −y −x2 −xy
0 1 y x −xy −y2

)
. (23)

wherep = (dx, dy, s, θ, α, β)T is the parameter vector. In the same way, we the follows for equation 18.

u =
sx cos θx− sx sin θy + dx

hx− hy + 1

v =
sy sin θx + sy cos θy + dy

hx− hy + 1

∂U

∂p
|dx=0,dy=0,sx=1,sy=1,θ=0,h=0 =

(
1 0 x 0 −y −x2 + xy
0 1 0 y x −xy − y2

)
. (24)

wherep = (dx, dy, sx, sy, θ, h)T is the corresponding parameter vector.

This parameterization describes the out-of-plane rotation as shear deformations in the image coordinates.
As an extension from 4, or 6 parameter case, we can also present the higher order deformations (mostly 2nd
order) by introducing the quadratic items in the warping equation.

(
u
v

)
=

(
µ11 + 1 µ12 µ13 µ14 µ15 µ16

µ21 µ22 + 1 µ23 µ24 µ25 µ26

)




x
y
1
x2

xy
y2




, (25)

From the above equation, we can see 12 parameters are needed to be estimated in the optimization.

∂U

∂p
|p=0 =

(
x y 1 x2 xy y2 0 0 0 0 0 0
0 0 0 0 0 0 x y 1 x2 xy y2

)
. (26)

wherep = (µ11, µ12, µ13, µ14, µ15, µ16, µ21, µ22, µ23, µ24, µ25, µ26)T is the parameter vector.

Once we have the alignmentWn,n+1between current successive image framesn andn + 1, the next task
is to warp imagen + 1 to the global mosaic given the coordinates of imagen. Denote the global alignment of
imagen to mosaic is a WarpWM

n , so we get the global transformation for imagen + 1 as follows

WM
n+1 = WM

n ∗Wn,n+1 (27)

Note the updating relation in equation 27 is called compositional approach [2]. Quadratic warps do not form
a semi-group, so only additive approach is available. To achieve the more precise mosaic, similar compositional
optimization are implemented for global alignment based on the initial warpWM

n+1 = W (∆p) ∗WM
n+1.
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2.2.3 Pixel Selection

Image-based direct registration methods are usually more computational costly due to the large number of
pixel involved. Therefore, we try to only use a portion of the pixels to achieve very close or same performance,
compared with using all image pixels for optimization.

Our pixel selection criterion is very intuitive. We try to minimize the sum of squares of eachJT J ’s ele-
ment’s change caused by not using a pixel. Observe that

JT J =
n∑

i=1

J (i)T J (i) (28)

and sinceJ (i) is a row vector,

∑

k

∑

l

(J (i)T J (i))2k,l =
∑

k

∑

l

J
(i)
k J

(i)
l = (

∑

k

J
(i)
k )2 (29)

So thoseJ (i)s that have the smallest magnitudes will be discarded. Here we consider both the magnitude of
image gradients and the parametric relations encoded in the Jacobian matrix.

For every incoming image frame, it is registered with the last frame, which has known warping parameters.
And it is then registered with the current global mosaic image to refine the result. both local and global spatial
information are considered. Finally it is warped and added to the mosaic by a proper weight.

3 Implementation Details

Unlike the mathematical formulation in section 2, we discuss 2 technical aspects of our work on image acquire-
ment interface and image processing library.

3.1 Image Acquirement with IEEE 1394 Fire-wire Interface

In our implementation, the first task is to acquire the live video for mosaicing in real time. Currently, we use
IEEE-1394 based digital cameras with the firewire interface. The publicly available IEEE-1394 software driver
from Robotics Institute, CMU is employed in our project. In Figure 3, We show an example of image resolution
setting and one snapshot of images being processed.

Now we are exploring to control pan-tilt camera to capture video image actively. The pan-tilt head can
achieve nearly pure rotation camera motion, which makes our parametric warping assumption more accurate to
any environment by rotational homography [22].

3.2 Image Processing via Intel IPL Library

With the Image Processing Library (IPL), Intel provides Pentium and MMX-optimized low-level routines for
fast image processing. We mainly use three functions for different warping:iplWarpAffine()for affine trans-
formation, iplWarpPerspective()for perspective transformation (Homography), andiplRemap()for arbitrary
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(a) (b)

Figure 3: The graphical user interface used for live image acquirement and real time mosaicing: (a) Resolution
selection for camera(b) A snapshot of captured image.

geometric transformation, mostly quadratic warping with a pre-computed warping matrix. The image interpo-
lation functions are automatically called from the above geometric transformation functions. We also use ipl
library for image filtering and pyramid.

4 Experiments and Performance Evaluation

In our mosaicing framework, we introduce different orders of parametric warping model. As shown in Figure
4, Translational transformation between images is taken as the Zero-order warping, and Affine transformation,
Quadratic transformation are considered as First-order or Second-order warping model, respectively. Perspec-
tive warping is a nonlinear model by reflecting the influence of depth information, which contains different
types of distortion with radial Quadratic distortions. For simplicity, the models up to Affine transformation are
linear, and below ones are nonlinear.

We first show some snapshots of the image mosaicing process. The image mosaicing process of a projected
eye retina image is demonstrated in Figure 5. Quadratic warping is not used because the local retina surface
can be well approximated using planar patches. The other experiment shows the image mosaicing result of a
complex indoor scene in our laboratory. In theory, the environment is not planar and has multiple layers. We
can still get reasonable results with perspective warping model, under moderate motions.

Finally, we analyze the computational time as the measure of performance. In our mathematical formulation
for image registration in section 2, we obtain a close-form solution for parameter updates. No iteration is
needed. However, due to the high orders of Taylor series in Equation 2, the image noises and limited computing
precision, we still employ iterations to search more accurate result. For simplicity, the number of iteration for
each frame is fixed as 5 in our experiments. We find that the computing load is a function of time and complexity
of the environment.

In our comparison, we perform our algorithm to three different scenarios, under three different resolutions.
Besides the retina mosaics shown in Figure 5, we gave some snapshots of mosaics from a 3D indoor environ-
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Figure 4: Image mosaicing result for 3D scene image sequence of a laboratory environment.

(a) (b)

(c) (d)

Figure 5: Image mosaicing result for a retina image sequence. (a) Frame 3 (b) Frame 12 (c) Frame 23 (d) Frame
31.
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(a) (b)

Figure 6: Image mosaicing result for 3D scene image sequence of a laboratory environment with different
warping models. (a) Perspective warping (b) Quadratic warping

(a) (b)

Figure 7: Different scenarios for image registration. (a) 3D indoor environment (b) planar regular pattern.

ment and a planar regular pattern in Figure 7. In theory, the speed of our algorithm depends on the number of
pixels filled in the Jacobian matrix which is a function of image resolution, complexity of environment and the
camera motion. In Figure 8, we can see the computation time is roughly a linear function with image resolution
under three environments. The planar regular pattern normally has more pixels with strong gradient informa-
tion to be selected, than the indoor scene and retina. The indoor scene roughly has the same order of necessary
computations with retina. From Figure 8 (b), the camera motion also has big influence on the calculation load.
With more rapid motions, the overlapped portion of successive images are relatively small, so fewer pixels
are involved. The oscillated curves in Figure 8 (b) reflect the fast and sudden camera motions. Normally, the
computation time does not change much with stable camera motions.

Our algorithm does not work always, so we also investigate when and how it degrades. From our exper-
imental experiences, the failed sequence normally results a wrong and smaller scale factor estimates, so the
current images become very small in the global mosaic after warping. Fewer and fewer image pixels are over-
lapped which make the computation time curve going down in process of time. An example is illustrated in
Figure 9.
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Figure 8: Performance comparison of image registration under different image resolution. (a)160 × 120 (b)
320× 240 (c) 640× 480.
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Figure 9: The computation time curve of registration for a gradually degraded video sequence.

5 Summary and future work

Our work demonstrated a viable method for real-time image mosaicing by directly minimizing SSD. The
method is suitable for a planar or quadratic surface with a free moving camera, or any scene with a rotation-only
camera motion. Future work will include a method to detect accumulated errors and dynamically re-distributed
them, a better warping model for quadratic surface and other parametric or non-parametric constrained surfaces,
and a layered or masked model when motion parallax is significant.

By directly using image intensity patches as alignment criterion, we plan to fuse some stable one-order
edge-like feature for registration. Chamfer distance [46] and distance transformation [5] can be applied into
our problem solving framework. Combining the SSD information, a pixel weighted or reweighted least squares
algorithm can improve our rough pixel selection strategy. On the other hand, we also plan to explore the video
frame selection problem. If we take the resulting mosaic image as our final task, not all the frames in the video
sequence are necessary, or even have some bad influence on the mosaic registration. We are researching to find
a frame selection criterion and algorithm that can be used to eliminate the information redundant frames and
difficult frames for registration (We call them ghosting frames) , like frames with suddenly big distortions. We
hope both the computational efficiency and image quality can be improved, because we do not try to register
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every image frame, especially for ghosting frames. A filtering method on the motion parameter trajectories is
under exploring.

In our computer aided surgery application, we use a micro medical robot with camera to get narrow view
live video images from the retina surface of the patient. similar with the aero instrument of video camera
in the surveillance plane [26], we can read motion parameter values from the medical robot. How to fuse
the sensor information with the direct measurement from the image will be our next task. We may have a
reference image for a global view of retina, which can also be used to locate the current narrow view live video
images with higher resolution. With feature based representation for a long sequence, we can obtain the 3D
information via factorization method [41] that will be helpful for 3D surface reconstruction and more complex
form image registration. Appearance based layer extraction method [44] are also available for 2.5D vision
process, which can decompose the scene by multiple layers for perspective warping. Our parametric warping
model assumption will be more practical for multiple layers to approximate the real 3D scene.

Our image registration framework is a direct method to get the close-form solution for a given problem.
We plan to analyze the probabilistic aspects about the parameter estimation in this work. The probabilistic
modelling can help us the inference the uncertainty of image alignment and find a method to handle the temporal
accumulated misalignment error. Our method is efficient for small local distortions. For large frame-in-frame
appearance transformation, our method can not guarantee the convergence, even with multiple iterations. Object
recognition method [3] can be used for scale, rotation-invariant or affine-invariant automatic initialization or
sparse images registration.
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