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Abstract

Automatic coronary artery centerline extraction from 3D
CT Angiography (CTA) has significant clinical importance
for diagnosis of atherosclerotic heart disease. The focus
of past literature is dominated by segmenting the complete
coronary artery system as trees by computer. Though the
labeling of different vessel branches (defined by their medi-
cal semantics) is much needed clinically, this task has been
performed manually.

In this paper, we propose a hierarchical machine learn-
ing approach to tackle the problem of tubular structure
parsing in medical imaging. It has a progressive three-
tiered classification process at volumetric voxel level, vessel
segment level, and inter-segment level. Generative models
are employed to project from low-level, ambiguous data to
class-conditional probabilities; and discriminative classi-
fiers are trained on the upper-level structural patterns of
probabilities to label and parse the vessel segments. Our
method is validated by experiments of detecting and seg-
menting clinically defined coronary arteries, from the ini-
tial noisy vessel segment networks generated by low-level
heuristics-based tracing algorithms. The proposed frame-
work is also generically applicable to other tubular struc-
ture parsing tasks.

1 Introduction
Coronary artery disease is the number one killer in the

developed world. Therefore, automatic coronary artery ex-
traction from 3D CT Angiography (CTA) has a signifi-
cant clinical impact. The majority of previous vessel trac-
ing/tracking work target to (“blindly”) construct the coro-
nary artery tree system, by running classical minimum-cost
path optimization [3, 7, 11, 5, 1] on a graph in a breadth-
first-search fashion. In 2D/3D medical imaging, this cost
is often formulated by a numerical term called “vesselness”
that defines the magnitude of how likely each voxel (on the
path) is on a tubular structure. Further more, various “ves-

selness” metrics based on Match Filters [8], Hessian Matrix
[4], Medialness [7], and many other assumptions of low-
level image observation have been proposed. However this
vesselness + shortest path formula lacks semantic or class-
conditional information, rather than builds a breadth-first
tree. The clinically important vessel segments can not be
distinguished from many other branches. In practice, proper
labeling of coronary arteries can significantly improve clin-
ical workflows of disease diagnosis, assessment, reporting,
and image-guided vessel intervention procedures.

In this paper, we propose a hierarchical, supervised
learning approach to label and segment generic tubular
structures in medical imaging. In particular, three cate-
gories of coronary arteries, including right coronary artery
(RCA), left anterior descending artery (LAD) and left cir-
cumflex artery (LCX1), are studied examples, based on an
annotated vessel set in CTA by experts. Annotating and
labeling vessels only by hands, is labor intensive (as brows-
ing through volume slides) and can be unreliable or have
large between-reader variation [16]. Our purpose is devel-
oping a trainable system upon a database of verified ex-
pert annotations to provide a quantitatively stable reference
for improved clinical usage. The method can be general-
ized for other tubular structure parsing tasks, e.g. vessels
in liver and brain, lung airway and colon, in 3D medical
imaging. Specifically, the mathematical notation of our
problem is as follows. Assume that a set of vessel seg-
ments as 3D curves {Vi}i=1,...,n are generated from each
CTA volume as different branches of the RCA/LAD/LCX
vessel tree, based on a variation of above-mentioned ves-
sel tracking techniques[1]. Given the annotated curve A
per volume, the optimal output is max{sim(V,A)}, V ∈
{V ′i}i=1,...,m, where {V ′i}i=1,...,m is a super-set of the orig-

1The main branches of the three vessel trees all have a proximal, a
mid, and a distal segment. The differences of these main branches with
other outgrowths can be very ambiguous, due to large structural variation
of coronary arteries across patients and races. Our goal is to automatically
separate the three main branches from all other side branches within its
corresponding tree.
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inal {Vi}i=1,...,n after expansion during our process and
m > n, and sim(·, ·) is a similarity function between two
3D curves. Therefore, our problem is indeed converted as
classification issue with the set-expansion process as dis-
cussed in section 3.

Our method is partially inspired by statistical edge/road
modeling in natural or satellite images [10, 6]. However our
image observation model is totally different from [10, 6],
due to the different nature of data resources and modali-
ties. A novel set of geodesic distance-indexed local geom-
etry features is fed into both generative and discriminative
models and evaluated for their descriptive capacity in cap-
turing different outgrowth patterns of a 3D tubular structure.
Other distance metrics are also explored. More importantly,
our application demands a higher accuracy of classification
and segmentation than the general-purpose statistical edge
learning [10], and requires the parsing of more specific and
semantic information, in order to achieve clinical relevance
and usefulness. Therefore, we propose a novel three-tiered
classification hierarchy on the top of likelihood ratio testing
[10, 6], at volumetric voxel level , vessel segment level and
inter-segment level. It projects low-level noisy image ob-
servations as class-conditional probability values and prop-
agates them to further infer high-level knowledge. This
local-to-global scaled hierarchical inference structure can
be considered as an analogy to the increasingly complex
cognitive vision system and its computational model [14].

In summary, we have three major contributions: (i) a hi-
erarchical classification architecture progressively extract-
ing and inferring clinical semantics from medical images,
(ii) effective joint (geodesic) distance and geometry feature
sets describing 3D tubular structures with extensive evalua-
tion, and (iii) the first complete system, to our best knowl-
edge, addressing automatic coronary artery branch labeling
and segmentation , as shown in Figure 2.

2 Problem Formulation & Overview
In this paper, we present a three tiered hierarchical learn-

ing framework to address the tubular structure parsing prob-
lem in 3D medical imaging. Though our work primarily fo-
cuses on coronary arteries, it is straightforward to extend to
lung airways, colon or other tubular structures. The diagram
of our proposed algorithm is shown in Figure 1.

Coronary arteries of RCA, LAD and LCX are learned
in the same way and processed independently, so we only
use LAD as an example in the following, unless otherwise
stated. Both the annotated vessel A and each of traced ves-
sel segments Vi are mathematically represented as vectors
of 3D point coordinates [P 1

i ;P 2
i ; ...;P ji ; ...]. We first fit

each array using a cubic spline and compute 11 distances
+ geometric features on each point P ji analytically. After
this step, our data format converts from vectors of 3D point
coordinates into arrays of 11 combined features. Note that
all {Vi} and A rooted from the same artery ostium. Next

Figure 1. The framework of our proposed three tiered classification
hierarchy.

Figure 2. A screenshot of our vessel parsing system using CTA
volume.

all identities in {Vi} are manually labeled as one of four
groups according to their spatial overlapping relationships
with A: C1 : Vi ⊂ A, C2 : Vi

⋂
A 6= 0, C3 : A ⊂ Vi and

C4 : Vi
⋂
A = 0. By performing the piecewise alignment

and matching between A and Vi, e.g., dynamic time warp-
ing [13], we can construct the positive and negative datasets
of classes “on-A” and “off-A” using features of P ji from
the matched portion and unmatched portion of {Vi} from
four above sub-classes respectively.

The voxel level feature classification and modeling al-
gorithms are extensively evaluated using three generative
models of Kernel Density Estimator [9], marginally opti-
mized histogram and jointly optimize histogram on Cher-
noff Information of “on-A” and “off-A” class distributions,
and probabilistic discriminative Relevance Vector Machine
(RVM) [15] with feature selection [12]. The output of
this step is converting {Vi} from vectors of k-features into
sequences of normalized “on-A” class-conditional prob-
abilities ρji . Then at the vessel segment level, we de-



sign discriminative classifiers to distinguish the following
three classes as C1, (C2 ∪ C3) and C4. Note that any
C2 or C3 labeled Vi shows the same syntactic pattern as
[+, ...,+,−, ...−] and is treated the same way in testing.
We further run set-expansion on (C2 ∪ C3) using a greedy
bi-partitioning method to find the probable cutting points
on [ρ1

i ; ρ
2
i ; ...; ρ

j
i ; ...]. Each Vi ∈ (C2 ∪ C3) is split into

two new segments which are then added into {Vi} to form
a super-set {V ′i}. After intra- and inter- vessel segment ρ
smoothing on {V ′i} that is a specific 2D Markov Random
Field formulation and solved using Belief Propagation, the
best V ∈ {V ′i} (per volume or patient) is selected as the
final system output, according to a global goodness metric
using both V ′i’s ρ and length statistics.

3 Algorithm
Our three tiered hierarchical learning algorithm for ves-

sel tree structure parsing is described in detail as follows.
3.1 Voxel Level Processing and Modeling

Voxel Level Feature Computation: Figure 4 shows an
illustrative example of a coronary artery tree {Vi} along
with its vessel annotation and A. Each curve of Vi or A
is a sequence of 3D point world coordinates in CT scanner.
First we fit each sequence using a 3D cubic spline and re-
sample the spline uniformly to get [P 1

i ;P 2
i ; ...;P ji ; ...], un-

der a fixed spatial resolution ε = 0.5. The resulting se-
quence lengths ranges from 16 to 865 in a pool of 82 pa-
tients. The cubic spline representation permits us to com-
pute the local geometric features as the normalized tangent
vector T = [τ1, τ2, τ3] where ‖T‖ = 1, tangent orientations
θ = [θ1, θ2], curvature κ and torsion ψ analytically at each
sampling knot P ji . We also obtain the geodesic distance2

G and Euclidean displacement ∆ = (P ji − O) from P ji to
the annotated LAD ostium O. G is uniquely determined as
the curve length, traced from any point P ji on the vessel
tree back to the ostium O. In total, we obtain 11 features
[T ; θ;κ;ψ;G; ∆] for each vessel knot point P ji . In testing,
coronary artery ostia are detected using boosted 3D Haar
features [17] in a multi-scale implementation.

3.1.1 Training Data Construction of “on-A” and “off-
A” Classes

Each of {Vi} and A per coronary artery in a 82 pa-
tient pool, generates dozens or hundreds of feature vec-
tors {T ; θ;κ;ψ;G; ∆} at all sampling knots. Our task is
to label and segment vessel fragments of {Vi} and approx-
imate A as close as possible. Thus we first construct the
binary-class feature datasets of {T ; θ;κ;ψ;G; ∆} for “on-
A” and “off-A”, according to the alignment criterion if P ji

2In training, we need to align Vi to A by allowing partial sequence
matching, e.g., dynamic time warping. Given that the first point onA is the
vessel ostiumO, all knot points on Vi can be traced back toO through the
aligned path and consequently their geodesic distances can be calculated.
Details are omitted due to space limit.

Figure 3. An illustration of our modified Dynamic Time Warping
which allows partial matching from input sequence against tem-
plate.

Figure 4. An illustrative drawing of left anterior descending artery
(LAD) with its simplified neighboring vessel branches. A is the an-
notation curve (Red), while V1, V2, V3 are vessel segments traced
by computer (Black). We further label V1 as a bifurcated branch
(C2), V2 as an over-grown branch (C3), and V3 as an opposite
branch (C4). By locating the cutting points (as blue dots) on
V1, V2, voxel features on the matched portions (with A) are used to
construct the “on-A” set (+); and we use the unmatched portions
of V1, V2 and the whole range of V3 for the “off-A” set (-).

is spatially close enough to A. Recall that {Vi} is man-
ually labeled as four subcategories C1, C2, C3, C4 and all
{Vi} stem from the same ostium as A per volume, which
forms a vessel tree as shown in Figure 4. We save all fea-
tures computed from Vi ∈ C1 into Fon, and all features
from Vi ∈ C4 into Foff . Then each Vi ∈ (C2

⋃
C3)

is piecewise matched against its corresponding annotated
curve A to obtain [d1

i ; d
2
i ; ...; d

j
i ; ...], using partial sequence

matching. e.g., modified dynamic time warping (DTW)
[13]. In Figure 3, we permit the matching from an in-
put sequence to partial of the template by searching the
element with the minimal value along the last column of
DTW cost graph. Thus the overall minimum-cost path may
not be traced back from the top-right element as in the
original DTW algorithm. This is because only the ostium
end correspondence is guaranteed for different branches
on a vessel tree. A semi-automatic anomaly/changing
point detection scheme3 is employed onto the sequence of

3It is expected that the sequential distance pattern is constantly low for
matched vessel segment portion, and gradually increasing for unmatched,
bifurcated or outgrowth portion in C2 or C3 respectively.



[d1
i ; d

2
i ; ...; d

j
i ; ...] to find the splitting point dj

′

i and P j
′

i . Fi-
nally the voxel level feature vectors {T ; θ;κ;ψ;G; ∆} com-
puted at [P 1

i ;P 2
i ; ...;P j

′

i ] are pooled intoFon and other fea-
tures at [P j

′+1
i ;P j

′+2
i ; ...] are stored asFoff . The finalFon

and Foff is obtained by repeating above process for all vol-
umes in the training patient set. A drawing example of how
to handle the structural matching between the annotated left
anterior descending artery (Red) and its neighboring vessel
tree branches (Black) during training and construct the “on-
A” and “off-A” feature sets of Fon and Foff , is illustrated
in Figure 4.

3.1.2 Generative Density Modeling and RVM
Once theFon andFoff feature sets are generated, in theory,
any classification algorithms can be applied. However low-
level visual data is often noisy and ambiguous, we argue
that generative density models are preferred to give smooth
class-conditional outputs. We first investigate three density
modeling algorithms of Kernel Density Estimation [9] and
two variations of the multi-dimensional histogram model by
maximizing the Chernoff Information [2, 10] on two classes
Fon and Foff . Our feature set is over-complete because it
contains 11 distances + geometric features which are not
independent. Moreover, density models also generally fa-
vor low-dimensional feature space. We initially hand pick
four features out of 11 as f̂ = [G, θ;κ] as global geodesic
distance-indexed local tangent orientations and curvature
pattern. Then different feature selection settings are com-
pared and evaluated empirically. Finally each Vi is pre-
sented as [f̂1

i ; f̂2
i ; ...; f̂ ji ; ...] by default in feature space.

Our method has the following three steps:

1. Build density functions Mon() and Moff () of Ker-
nel Density Estimator (KDE), marginally optimized
Histogram (Histogram1), or jointly optimized His-
togram (Histogram2) for Fon and Foff respectively.

2. For a new feature vector ft for testing, obtain its nor-
malized “on-A” probability ρ(f̂) by

ρ(ft) =
Mon(f̂t) + ε

Mon(f̂t) +Moff (f̂t) + 2× ε
(1)

whereMon(f̂t) andMoff (f̂t) are the density values
outputted by either of three generative models; ρ(f̂t)
ranges 0 to 1 through normalization; and ε is a small
constant to avoid divide-by-zero.

3. Output [ρ1
i ; ρ

2
i ; ...; ρ

j
i ; ...] for each vessel segment Vi.

We employ a publicly available toolbox [9] for KDE im-
plementation. The Chernoff Information [2] in the discrete
distribution format of histograms Hon and Hoff is

C(Hon, Hoff ) = − min
0≤λ≤1

log(
K∑
k=1

Hλ
on(k)H1−λ

off (k)) (2)

which describes the magnitude of separatability of two
distributions. K is the number of histogram bins. To
make less ambiguous classification of “on-A” and “off-
A”, we optimize C(Hon, Hoff ) while constructing his-
tograms Histogram1 and Histogram2 by exhaustively
searching adaptive bin boundaries in the marginal or joint
feature space. The final Histogram2 model is shown in
Figure 8 for RCA (Left), LAD (Center) and LCX (Right)
arteries. Refer [10] for more details. Through our eval-
uation, three density models have shown similar perfor-
mances (as seen their ROC curves in Figure 9) where KDE
is slightly advantageous but with much higher model com-
plexity than histogram models. Under the similar number
of bins, Histogram2 outperforms Histogram1. Thus we
use the density outputs fromHistogram2 for the following
steps by default.

We also investigate discriminative modeling approaches
as opposed to generative models. Relevance vector ma-
chine (RVM) [15] has been a widely-used Bayesian ap-
proach for classification. It follows the same functional
form as support vector machines (SVM) but provides prob-
abilistic predictions for class labels. We employ a Matlab
implementation of RVM publicly available to construct a
discriminative classifier on eight of the original 11 features
[T ; θ;κ;ψ;G; ∆] by the extended RVM feature selection
scheme [12]. The resulting classifier is then used to pro-
vide probabilistic estimates of ρ as the positive “on-A” class
confidences or probabilities. Receiver operating charac-
teristic (ROC) curves of Kernel Density Estimator (KDE),
marginally optimized histogram (Histogram1), jointly op-
timized Histogram (Histogram2) and RVM are given in
Figure 9, using three-fold cross validation.
3.2 Vessel Segment Level Classification and Set-

Expansion
In testing, if the class information of any vessel segment

Vi ∈ C1, (C2∪C3), orC4 is known, we can discardC4 ves-
sels, detect and segment the high ρ portions of (C2 ∪ C3),
and combine them with C1 curves in each volume, to infer
the best output per volume/patient. Vessel segment level
classification is treated as a general multi-class problem.
Because computer traced vessel segments can have various
lengths, the dimensions of their resulting ρ-sequences are
also different. This problem is tackled by our three step
processing as follows: For each Vi,

1. Sub-sample the ρ-sequence [ρ1
i ; ρ

2
i ; ...; ρ

j
i ; ...] to make

them of equal length (say L) as Si(ρ). This is done
by splitting the sequence into L equal fragments, and
choosing a representing point (e.g., Median) for each
segment.

2. Represent features from Si(ρ). Two sets of features are
extracted: directly treating Si(ρ) after sub-sampling as
a L-dimensional vector, and its gradient feature vector
∆Si(ρ).



Figure 5. Set-Expansion by bipartitioning eachC2 orC3 classified
vessel segment into two new portions/curves. Though Median filter
can make the raw normalized “on-A” probability ρ() curve more
smooth, the estimated “bipartitioning” point is highly insensitive
with respect to Median filtering. The bipartitioning point (Red
Circle) coincides closely with our annotation label.

3. Classify each sequence into the three classes. SinceC4

is not of any use for us, it’s more important to separate
C4 sequences from all the other sequences. Therefore
we train a binary classifier first to separate C4 from
the others, and then train another binary classifier to
distinguish C1 from (C2 ∪ C3).

Two classifiers, the linear discriminate analysis (LDA) and
the support vector machines (SVM), are exploited and they
yield similar results. We measure the performance in AUC
(Area Under ROC Curve) values.

For each vessel curve Vi ∈ (C2 ∪ C3), we run Set-
Expansion operation by bipartitioning it into two pieces
with higher ρs for matched “on-A” or lower ρs for un-
matched “off-A”. The ρ compactness metric is first com-
puted for every point P ji on [ρ1

i ; ρ
2
i ; ...; ρ

j
i ; ...] of Vi as

Φ(i, j) = std([ρ1
i ; ρ

2
i ; ...; ρ

j
i ])× (j/Ni)+

std([ρj+1
i ; ρj+2

i ; ...ρNi
i ])× (Ni − j)/Ni

(3)

where std() returns the standard deviation from a one-
dimensional array of ρs and represents its compactness, and
Ni is the length of curve Vi. Φ(i, j) is the length-weighted
average of the standard deviations from two split subse-
quences. We then select the point P j

′

i as the bipartitioning
boundary of any Vi ∈ (C2 ∪ C3) where

Φ(i, j′) = min
j
{Φ(i, j)} (4)

Optionally, multiple bipartitioning boundaries can be com-
puted. Refer to Figure 5 for an example of vessel curve
ρ-bipartitioning process. Finally, two new vessel segments
split from each Vi ∈ (C2 ∪C3) are added into {Vi} to form
a super-set {V ′i} for each volume.

Figure 6. Example of star-graph linking P j
2 to P j′

1 and P j′

3 for
message-passing based ρ smoothing (j = 1, 2).

3.3 Inter- Vessel Segment Level Smoothing and
Goodness Measure

For each Vi ∈ {Vi} of per patient/volume, we match it
against the rest of vessel curves using dynamic time warp-
ing [13] by permitting partial pointwise correspondences.
See the dark green line segments between any two curves in
Figure 6 as piecewise point matching results. We then build
a star-graph for every knot point P ji on Vi to its correspond-
ing points of all other vessel segment Vk ∈ {Vi}, k 6= i,
which results an asymmetric, loopy graph in the volume
space. Message-passing based smoothing on ρji is option-
ally performed, as a specific case of Markov Random Field
(MRF) solved by Loopy Belief Propagation (LBP) [18].
The belief is initialized with ρji output by our generative
density functions, and all messages are initialized as 1.
Moreover, the pairwise potential function between P ji and
its correspondence P j

′

k is defined as

ψ(P ji , P
j′

k ) ∝ exp{−
d(P ji , P

j′

k )
σ1

} (5)

where d(·, ·) is the Euclidean distance function between
two points in 3D coordinates and σ1 is the estimated
standard deviation of Euclidean distances from pairwise
point matches between “on-A” and A during training.
The ρ smoothing process iterates on every star-graph on
{P ji , P

j′

k }k 6=i for several rounds until convergence. We de-
note the updated ρji as ρ̃ji . Notice that we only perform
inter-vessel segment level smoothing for {Vi} per volume
because {V ′i} produce only new curve groupings of {ρji} or
{ρ̃ji}, but not unseen graph structure.

At last, we describe an overall goodness measure for
each V ′i ∈ {V ′i} and choose the system output as the ves-
sel curve V ∈ {V ′i} with the maximum goodness value

Υ(V ′i) = exp{µi(ρ̃)− µ̄(ρ)
σ(ρ)

}+ λ exp{ | Li − µ̄(L) |
σ(L)

}

(6)
where µi(ρ̃) is the mean of {ρ̃ji} values on V ′i and Li is
the curve length of V ′i . µ̄(ρ), σ(ρ) and µ̄(L), σ(L) are the
estimated means and standard deviations of ρ and curve



length on the annotation vessel set per artery category of
RCA, LAD and LCX, as prior information. This goodness
measure balances the overall ρ̃ score and the vessel length
fitness term against the prior model of annotation dataset.
λ = 0.35 is determined by optimizing sim(V,A) using
cross-validation. It is probably due to the relatively large
variation of vessel lengths which makes the second term in
equation 6 less weighted, i.e., the vessel length prior is more
flat.

4 Experiments
Data: In each CTA volume, we implement and present

an interactive graphical user interface which allows radiol-
ogist to annotate the three RCA, LAD and LCX arteries. In
order to avoid missing of main branches, a multi-hypothesis
vessel centerline detection algorithm [1, 5] is implemented
to extract as many branches as possible in RCA, LAD and
LCX vessel trees. As shown in Figure 7, the distributionof
computer traced vessel segments (Right) from 82 patients
demonstrates significantly larger variation than the artery
annotation dataset (Left), for all three categories. Our CT
angiography datasets were acquired from two hospitals un-
der their normal imaging protocols, including both Cau-
casian and Asian populations.

We first evaluate the performance of generative and dis-
criminative model on the voxel-level feature sets Fon and
Foff . Figure 9 draw ROC curves of probability density
values based on KDE; Histogram1 and Histogram2

models on the domain knowledge selected [G, θ;κ] features;
RVMA on the full 11 [T ; θ;κ;ψ;G; ∆] features where a
subset of eight features is actually selected by [12]; and
RVMS on the same [G, θ;κ]. In our experiments, the
generative density modeling apparently demonstrates su-
perior classification accuracies than the sophisticated dis-
criminative model of Relevance Vector Machine [15, 12]
on our noisy low-level imaging data. The AUC measures
are 0.9179, 0.9069, 0.9020, 0.8019, 0.8018 respectively for
these five models. The performance difference between
RVMA and RVMS is negligible which implies our manu-
ally picked feature set is empirically as good as the theoreti-
cal optimal feature set inRVMA [12]. To exploit the effects
of introducing different distance metrics into the joint dis-
tance and geometry feature space, we train four KDE mod-
els (as KDE∆, KDE, KDEE and KDEG) on [∆, θ;κ],
[G, θ;κ], [D, θ;κ], or Geometry-only feature set [θ;κ]. ∆
is the Euclidean distance displacement and D =| ∆ |.
The AUC measures are 0.9621, 0.9179, 0.9091, 0.8499, as
shown in Figure 10. To get direct insights on ρ’s perfor-
mance at vessel level, we simply use the mean value of {ρ}
on each curve as its similarity to the “on-A” class. This
is executed for all traced vessel segments {Vi} and the an-
notation A per artery per volume. Then, if the curve with
the highest similarity score is the annotation A or belongs
to C1, the classification is correct; otherwise, it is incor-

Figure 9. Receiver operating characteristic curves for learning
the binary “on-A” and “off-A” classification using five models:
KDE, Histogram1 and Histogram2 on the domain knowledge
picked feature set [G, θ;κ]; RVMA of automatic feature selec-
tion on the original 11 features [T ; θ;κ;ψ;G; ∆] and RVMS on
[G, θ;κ].

Figure 10. Receiver operating characteristic curves for learning
the binary “on-A” and “off-A” classification using four KDE
models under different distance metrics with Geometric features:
Distance Displacement [∆, θ;κ]; Geodesic distance [G, θ;κ]; Eu-
clidean distance [D, θ;κ]; and Geometry-only feature set [θ;κ].

rect. Using KDE, Histogram1, Histogram2, RVMA

and KDEG models and LAD artery as example, the clas-
sification error rates are 2, 3, 4, 25, 17 out of 82. Note that
the above vessel level evaluation is not applicable in final
testing since A is not available. A Plot of ρ Curves, us-
ing KDE, Histogram1, Histogram2 and RVM on a LAD
vessel segment ∈ C3, is also illustrated in Figure 11.

At the vessel segment level classification of C1, (C2 ∪
C3), C4, we employ the linear discriminate analysis clas-
sifier (LDA) and the support vector machines (SVM) on
Si(ρ) or ∆Si(ρ), as described in section 3.2. The perfor-
mance differences of LDA and SVM on both feature sets
are negligible, and Si(ρ) offers slightly better accuracy than
∆Si(ρ). The AUC values of using LDA on Si(ρ) features
are 0.9898 and 0.9122, for the first classifier to discard C4

and the second classifier to distinguish (C2 ∪ C3) from
C1 respectively. After this step vessel segments classified
∈ C4, with 100% accuracy, are removed from {Vi}. The
final system has the detection rate of 98% for (C2 ∪ C3)
with 10% false positive rate of C1, by tuning the operat-



(a) Annotation (b) Vessel Segments
Figure 7. The 3D Plots of all annotation curves (Left) and initially traced vessel segment curves [1] (Right), integrated from a population
of 82 patients. RCA is shown in Green and LAD in Red and LCX in Blue. The ostia of RCA, LAD, or LCX vessel curves are respectively
aligned for display clarity.

(a) Histogram2 RCA (b) Histogram2 LAD (c) Histogram2 LCX
Figure 8. Jointly optimized Histogram2 model of RCA (Left), LAD (Center) and LCX (Right) arteries by optimizing Chernoff Informa-
tion in the joint f̂ = [G, θ;κ] feature space. The final C(Hon, Hoff ) = 1.1492, 0.4108, 0.4042; λ = 0.5 for RCA, LAD and LCX.
Histogram2 has total 350, 945 or 2592 bins in four dimensions from RCA, LAD to LCX, which indicates increasingly more complex
models.

Figure 11. Plot of ρ Curves using KDE, Histogram1,
Histogram2 and RVM on a LAD vessel segment ∈ C3. RVM
shows low variance but high bias against the annotation label
curve (in magenta), compared with its generative counterparts.

ing point on ROC curve. Our Set-Expansion process by
ρ-bipartitioning is highly robust and accurate, as demon-
strated in Figures 5 and 12, though the raw ρ-curves appear
very bumpy and noisy. We especially test the repeatability
of bipartitioning boundaries using Median filter smoothing
on ρ-curves with various window sizes. In our experiments,
the effect of Median filter is inappreciable.

The accuracy of our whole vessel structure parsing sys-

tem depends on the similarity of the annotation artery curve
A and the optimal vessel output V from the expanded set
{V ′i}i=1,...,m as sim(V,A) per artery per volume. Assum-
ing Cov(V1,V2) is an asymmetric function that gives the
length of the portion of curve V1 overlapped with V2, we
define

sim(V,A) = {Cov(V,A)
L(V)

+
Cov(A,V)
L(A)

}/2 (7)

where L(·) returns the length of curve V or A and
sim(V,A) is symmetric and ranges from 0 to 1. In prac-
tice, Cov(V1,V2) is implemented by first computing the
distances of all sampling points on V1 to their correspon-
dence on V2, and counting the number of points with dis-
tance ≤ T = (µ1 + λ1σ1). µ1 and σ1 are the estimated
mean and standard deviation of Euclidean distances from
pairs of point matches between “on-A” and A during train-
ing. λ1 is set as 0.5. T = (µ1 + 0.5σ1) = 1.96mm value
is the same for all three coronary arteries and coincides
closely to 2mm as the averaged vessel width in [16]. The
estimated sim(V,A) accuracies of three artery categories
(RCA, LAD and LCX), using ρ produced by three density
models of KDE, Histogram1 or Histogram2, and with
Median filtering of various window sizes, are presented in



Figure 12. Averaged overlapping accuracy between annotation
artery and our final output vessel segment. Our results are sta-
ble and robust to no Median filtering on ρ() and Median filtering
with various window sizes.

Figure 12. These accuracy measures are averaged from a
dataset of 82 patients by three-fold cross validation. In sum-
mary, we achieve accurate and stable results as the averaged
sim(V,A) = 0.9497 ∼ 0.9716 for RCA, 0.9328 ∼ 0.9653
for LAD and 0.9219 ∼ 0.9444 for LCX. LBP smooth-
ness can slightly improve the final vessel segmentation ac-
curacies at 0.0057 for RCA, 0.0096 for LAD and 0.0126
for LCX in average. Plot of vessel segmentation accuracy
distributions over 82 patients for RCA, LAD and LCX is
shown in Figure 13. The statistics of mean, standard devi-
ation (Std) and percentages (%) of vessel segmentation ac-
curacy above certain thresholds (> 0.95, 0.90, 0.85, 0.80)
over patients is also given in Table 1. Robust and accu-
rate coronary vessel labeling and segmentation results are
achieved for majority or high majority of patients. For cases
with lower accuracies <= 0.80, we observe that {Vi} often
covers only partial of A using the vessel tree tracer [1] un-
der poor imaging quality. Our algorithm performs at per
patient and per artery category level in run time.

Mean Std 0.95 0.90 0.85 0.80
RCA 0.972 0.042 80.5 90.2 97.6 100
LAD 0.965 0.056 82.9 90.2 92.7 97.6
LCX 0.944 0.070 64.6 81.7 87.8 96.3

Table 1. Table of mean, standard deviation (Std) and percentages
(%) of vessel segmentation accuracy above certain thresholds over
patients.

5 Conclusion
In this paper, we present a hierarchical machine learn-

ing approach for the problem of tubular structure parsing
in 3D medical imaging. It has a progressive three-tiered
classification process at volumetric voxel level, vessel seg-
ment level, and inter-segment level. Our new joint distance
and local geometry feature sets are shown to be capable
of describing and discriminating complex 3D tubular struc-
tures/branchs. In future work, we plan to integrate the class-

Figure 13. Plot of Vessel Segmentation Accuracy Distributions
over Patients for RCA, LAD and LCX.

conditional densities ρ as an additional cost into the ves-
sel tracing algorithm for more efficient object-specific trac-
ing, and investigate extensions of our framework for other
2D/3D vessels or tubular structures in medical imaging.
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