
Strings, matching, Boyer-Moore
Ben Langmead

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me brie!y how you’re
using them. For original Keynote "les, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Resources

Gus!eld, Dan. Algorithms on strings, trees and sequences: computer science
and computational biology. Cambridge University Press, 1997.

iPython notebooks:
https://github.com/BenLangmead/comp-genomics-class

Including notebooks on strings, exact matching, and Z algorithm

https://github.com/BenLangmead/comp-genomics-class
https://github.com/BenLangmead/comp-genomics-class

Strings are a useful abstraction...

Lots of data is string-like: books, web pages, !les on your hard drive,
sensor data, medical records, chess games, ...

Algorithms for one kind of string are often applicable to others:

Methods for indexing books and web pages (inverted indexing)
can also be used to index DNA sequences

Regular expression matching is used to search !les on your
!lesystem (grep), and to !nd “bad” network packets (snort)

Methods for understanding speech (HMMs) can also be used to
understand handwriting or identify genes in genomes

... but don’t forget strings come from somewhere

Processes that give rise to real-world
strings are complicated. It pays to
understand them.

1. Evolution:

2. Lab procedures:

3. Sequencing:

Figure from: Hunter, Lawrence. "Molecular biology for computer
scientists." Arti!cial intelligence and molecular biology (1993): 1-46.

Mutation
Recombination
(Retro)transposition

PCR
Cell line passages

Fragmentation bias
Miscalled bases

C

A

C

A

T A

G

G

G

A

C G~ ~~

~ ~~

... and don’t forget strings have structure
One way to model a string-generating process is with coin !ips:

{ = A, = C, = G, = T }

But such strings lack internal patterns (“structure”) exhibited by real strings

More than 40% of human genome is
covered by transposable elements,
which copy-and-paste themselves
across the genome and mutate

Image from: Cordaux R, Batzer MA. The impact of retrotransposons on
human genome evolution. Nat Rev Genet. 2009 Oct;10(10):691-703

Slipped strand mispairing during DNA
replication results in expansion or
retraction of simple (tandem) repeats

ATATATATATATAT

ATATATATATATATATAT

......
......

String de"nitions

A string S is a !nite ordered list of characters

Characters are drawn from an alphabet Σ. We often
assume Σ has O(1) elements *.

Nucleic acid alphabet: { A, C, G, T }
Amino acid alphabet: { A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V }

Length of S, | S |, is the number of characters in S

ϵ is the empty string. | ϵ | = 0

* but sometimes we’ll consider | Σ | explicitly

String de"nitions

For strings S and T over Σ, their concatenation consists of the
characters of S followed by the characters of T, denoted ST

S is a substring of T if there exist (possibly empty) strings u
and v such that T = uSv

S is a pre!x of T if there exists a string u such that T = Su.
If neither S nor u are ϵ, S is a proper pre!x of T.

De!nitions of suffix and proper suffix are similar

Python demo: http://nbviewer.ipython.org/6512698

http://nbviewer.ipython.org/6512698
http://nbviewer.ipython.org/6512698

String de"nitions

We de!ned substring. Subsequence is similar except the
characters need not be consecutive.

“cat” is a substring and a subsequence of “concatenate”

“cant” is a subsequence of “concatenate”, but not a substring

Exact matching

An alignment is a way of putting P’s characters opposite T’s
characters. It may or may not correspond to an occurrence.

Looking for places where a pattern P occurrs as a substring of
a text T. Each such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

wordAlignment 1: wordAlignment 2:

Let n = | P |, and let m = | T |, and assume n ≤ m

Exact matching

What’s a simple algorithm for exact matching?

There would have been a time for such a wordT:
P: word

Try all possible alignments. For each, check whether it’s an
occurrence. “Naïve algorithm.”

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word
 word
 word
 word
 word

word

One
occurrence

Exact matching: naïve algorithm

There would have been a time for such a wordT:
P: word

word word word

Python demo: http://nbviewer.ipython.org/6513059

def	 naive(p,	 t):
	 	 	 	 occurrences	 =	 []
	 	 	 	 for	 i	 in	 xrange(len(t)	 -‐	 len(p)	 +	 1):	 #	 loop	 over	 alignments,	 L-‐to-‐R
	 	 	 	 	 	 	 	 match	 =	 True
	 	 	 	 	 	 	 	 for	 j	 in	 xrange(len(p)):	 	 	 	 	 	 	 	 	 	 #	 loop	 over	 characters,	 L-‐to-‐R
	 	 	 	 	 	 	 	 	 	 	 	 if	 t[i+j]	 !=	 p[j]:	 	 	 	 	 	 	 	 	 	 	 	 #	 character	 compare
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 match	 =	 False	 	 	 	 	 	 	 	 	 	 	 	 	 #	 mismatch;	 reject	 alignment
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 break
	 	 	 	 	 	 	 	 if	 match:
	 	 	 	 	 	 	 	 	 	 occurrences.append(i)	 	 	 	 	 	 	 	 	 	 	 #	 all	 chars	 matched;	 record
	 	 	 	 return	 occurrences

http://nbviewer.ipython.org/6513059
http://nbviewer.ipython.org/6513059

Exact matching: naïve algorithm

There would have been a time for such a wordT:
P: word

What is the greatest number of character comparisons possible?

the least possible?

How many character comparisons in this example?

How many alignments are possible given n and m (| P | and | T |)?

word word

m - n + 1

n(m - n + 1)

m - n + 1

m - n mismatches, 6 matches

Exact matching: naïve algorithm

Worst-case time bound of naïve algorithm is O(nm)

In the best case, we do only ~ m character comparisons

Greatest # character
comparisons

Least:

n(m - n + 1) m - n + 1

Exact matching: slightly less naïve algorithm

There would have been a time for such a wordT:
P: word

word

We match w and o, then mismatch (r ≠ u)

There would have been a time for such a wordT:
P: word

word
word
 word
 word

skip!
skip!

... since u doesn’t occur in P, we can skip the next two alignments

Mismatched text character (u) doesn’t occur in P

Boyer-Moore

Use knowledge gained from character comparisons to skip future
alignments that de"nitely won’t match:

1. If we mismatch, use knowledge of the
mismatched text character to skip alignments

2. If we match some characters, use knowledge
of the matched characters to skip alignments

3. Try alignments in one direction, then try
character comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Good suffix rule”

For longer skips

Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C

Upon mismatch, let b be the mismatched character in T. Skip
alignments until (a) b matches its opposite in P, or (b) P moves past b.

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

(etc)

Case (a)

Case (b)

b

b

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C
Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

We skipped 8 alignments

In fact, there are 5 characters in T we never looked at

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Boyer-Moore: Bad character rule preprocessing

As soon as P is known, build a | Σ |-by-n table. Say b is the character in T that
mismatched and i is the mismatch’s offset into P. The number of skips is given
by element in bth row and ith column.

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Gus!eld 2.2.2 gives space-efficient alternative.

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C

Boyer-Moore: Good suffix rule

Let t be the substring of T that matched a suffix of P. Skip alignments
until (a) t matches opposite characters in P, or (b) a pre!x of P
matches a suffix of t, or (c) P moves past t, whichever happens !rst

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 3:

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Case (a)

Case (b)

t

Boyer-Moore: Good suffix rule

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Like with the bad character rule, the number of skips possible using the good
suffix rule can be precalculated into a few tables (Gus!eld 2.2.4 and 2.2.5)

Rule on previous slide is the weak good suffix rule; there is also a strong good
suffix rule (Gus!eld 2.2.3)

T:
P:

C T T G C C T A C T T A C T T A C T

C T T A C T T A C

t

C T T A C T T A C

C T T A C T T A C

Weak:

Strong:

With the strong good suffix rule (and other minor modi!cations), Boyer-Moore
is O(m) worst-case time. Gus!eld discusses proof.

guaranteed
mismatch!

Boyer-Moore: Putting it together
After each alignment, use bad character or good suffix rule, whichever skips more

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 1:

bc: 6, gs: 0

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 2:

bc: 0, gs: 2

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 3:

bc: 2, gs: 7

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 4:

Bad character rule:
Upon mismatch, let b be the mismatched
character in T. Skip alignments until (a) b
matches its opposite in P, or (b) P moves past b.

Part (a) of good
suffix rule

Part (b) of good
suffix rule

Part (a) of bad
character rule

Good suffix rule:
Let t be the substring of T that matched a suffix of P.
Skip alignments until (a) t matches opposite characters
in P, or (b) a pre"x of P matches a suffix of t, or (c) P
moves past t, whichever happens "rst.

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

b

b

b

t

t

Boyer-Moore: Putting it together

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 1:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 2:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 3:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 4:

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Up to now: 15 alignments skipped, 11 text characters never examined

Boyer-Moore: Worst and best cases

Boyer-Moore (or a slight variant) is O(m) worst-case time

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

What’s the best case?

Every character comparison is a mismatch, and bad character
rule always slides P fully past the mismatch

How many character comparisons? !oor(m / n)

Contrast with naive algorithm

Performance comparison

Naïve matchingNaïve matching Boyer-MooreBoyer-Moore

character
comparisons wall clock time

character
comparisons wall clock time

P: “tomorrow”

T: Shakespeare’s
complete works

P: 50 nt string
from Alu repeat*

T: Human
reference (hg19)
chromosome 1

Comparing simple Python implementations of naïve exact matching and
Boyer-Moore exact matching:

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

336 matches
| T | = 249 M

17 matches
| T | = 5.59 M5,906,125 2.90 s 785,855 1.54 s

307,013,905 137 s 32,495,111 55 s

