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Resources

Gus!eld, Dan. Algorithms on strings, trees and sequences: computer science 
and computational biology. Cambridge University Press, 1997.

iPython notebooks:
https://github.com/BenLangmead/comp-genomics-class

Including notebooks on strings, exact matching, and Z algorithm

https://github.com/BenLangmead/comp-genomics-class
https://github.com/BenLangmead/comp-genomics-class


Strings are a useful abstraction...

Lots of data is string-like: books, web pages, !les on your hard drive, 
sensor data, medical records, chess games, ...

Algorithms for one kind of string are often applicable to others:

Methods for indexing books and web pages (inverted indexing) 
can also be used to index DNA sequences

Regular expression matching is used to search !les on your 
!lesystem (grep), and to !nd “bad” network packets (snort)

Methods for understanding speech (HMMs) can also be used to 
understand handwriting or identify genes in genomes



... but don’t forget strings come from somewhere

Processes that give rise to real-world 
strings are complicated.  It pays to 
understand them.

1. Evolution:

2. Lab procedures:

3. Sequencing:

Figure from: Hunter, Lawrence. "Molecular biology for computer 
scientists." Arti!cial intelligence and molecular biology (1993): 1-46.
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... and don’t forget strings have structure
One way to model a string-generating process is with coin !ips:

{                    = A,                    = C,                    = G,                    = T }

But such strings lack internal patterns (“structure”) exhibited by real strings

More than 40% of human genome is 
covered by transposable elements, 
which copy-and-paste themselves 
across the genome and mutate

Image from: Cordaux R, Batzer MA. The impact of retrotransposons on 
human genome evolution. Nat Rev Genet. 2009 Oct;10(10):691-703

Slipped strand mispairing during DNA 
replication results in expansion or 
retraction of simple (tandem) repeats
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String de"nitions

A string S is a !nite ordered list of characters

Characters are drawn from an alphabet Σ.  We often 
assume Σ has O(1) elements *.

Nucleic acid alphabet: { A, C, G, T }
Amino acid alphabet: { A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V }

Length of S, | S |, is the number of characters in S

ϵ is the empty string.  | ϵ | = 0

* but sometimes we’ll consider | Σ | explicitly



String de"nitions

For strings S and T over Σ, their concatenation consists of the 
characters of S followed by the characters of T, denoted ST

S is a substring of T if there exist (possibly empty) strings u 
and v such that T = uSv

S is a pre!x of T if there exists a string u such that T = Su.  
If neither S nor u are ϵ, S is a proper pre!x of T.

De!nitions of suffix and proper suffix are similar

Python demo: http://nbviewer.ipython.org/6512698

http://nbviewer.ipython.org/6512698
http://nbviewer.ipython.org/6512698


String de"nitions

We de!ned substring.  Subsequence is similar except the 
characters need not be consecutive.

“cat” is a substring and a subsequence of “concatenate”

“cant” is a subsequence of “concatenate”, but not a substring



Exact matching

An alignment is a way of putting P’s characters opposite T’s 
characters.  It may or may not correspond to an occurrence.

Looking for places where a pattern P occurrs as a substring of 
a text T.  Each such place is an occurrence or match.

There would have been a time for such a wordT:
P: word

wordAlignment 1: wordAlignment 2:

Let n = | P |, and let m = | T |, and assume n ≤ m



Exact matching

What’s a simple algorithm for exact matching?

There would have been a time for such a wordT:
P: word

Try all possible alignments.  For each, check whether it’s an 
occurrence.  “Naïve algorithm.”
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Exact matching: naïve algorithm

There would have been a time for such a wordT:
P: word

word word word

Python demo: http://nbviewer.ipython.org/6513059

def	  naive(p,	  t):
	  	  	  	  occurrences	  =	  []
	  	  	  	  for	  i	  in	  xrange(len(t)	  -‐	  len(p)	  +	  1):	  #	  loop	  over	  alignments,	  L-‐to-‐R
	  	  	  	  	  	  	  	  match	  =	  True
	  	  	  	  	  	  	  	  for	  j	  in	  xrange(len(p)):	  	  	  	  	  	  	  	  	  	  #	  loop	  over	  characters,	  L-‐to-‐R
	  	  	  	  	  	  	  	  	  	  	  	  if	  t[i+j]	  !=	  p[j]:	  	  	  	  	  	  	  	  	  	  	  	  #	  character	  compare
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  match	  =	  False	  	  	  	  	  	  	  	  	  	  	  	  	  #	  mismatch;	  reject	  alignment
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break
	  	  	  	  	  	  	  	  if	  match:
	  	  	  	  	  	  	  	  	  	  occurrences.append(i)	  	  	  	  	  	  	  	  	  	  	  #	  all	  chars	  matched;	  record
	  	  	  	  return	  occurrences

http://nbviewer.ipython.org/6513059
http://nbviewer.ipython.org/6513059


Exact matching: naïve algorithm

There would have been a time for such a wordT:
P: word

What is the greatest number of character comparisons possible?

the least possible?

How many character comparisons in this example?

How many alignments are possible given n and m (| P | and | T |)?

word word

m - n + 1

n(m - n + 1)

m - n + 1

m - n mismatches, 6 matches



Exact matching: naïve algorithm

Worst-case time bound of naïve algorithm is O(nm)

In the best case, we do only ~ m character comparisons

Greatest # character 
comparisons

Least:

n(m - n + 1) m - n + 1



Exact matching: slightly less naïve algorithm

There would have been a time for such a wordT:
P: word

word

We match w and o, then mismatch (r ≠ u)

There would have been a time for such a wordT:
P: word

word
word
 word
  word

skip!
skip!

... since u doesn’t occur in P, we can skip the next two alignments

Mismatched text character (u) doesn’t occur in P



Boyer-Moore

Use knowledge gained from character comparisons to skip future 
alignments that de"nitely won’t match:

1. If we mismatch, use knowledge of the 
mismatched text character to skip alignments

2. If we match some characters, use knowledge 
of the matched characters to skip alignments

3. Try alignments in one direction, then try 
character comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Good suffix rule”

For longer skips



Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C

Upon mismatch, let b be the mismatched character in T.  Skip 
alignments until (a) b matches its opposite in P, or (b) P moves past b.

Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

(etc)

Case (a)

Case (b)

b

b

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



Boyer-Moore: Bad character rule

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C
Step 1:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

We skipped 8 alignments

In fact, there are 5 characters in T we never looked at 

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



Boyer-Moore: Bad character rule preprocessing

As soon as P is known, build a | Σ |-by-n table.  Say b is the character in T that 
mismatched and i is the mismatch’s offset into P.  The number of skips is given 
by element in bth row and ith column.

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Gus!eld 2.2.2 gives space-efficient alternative.

T:
P:

G C T T C T G C T A C C T T T T G C G C G C G C G C G G A A

C C T T T T G C



Boyer-Moore: Good suffix rule

Let t be the substring of T that matched a suffix of P.  Skip alignments 
until (a) t matches opposite characters in P, or (b) a pre!x of P 
matches a suffix of t, or (c) P moves past t, whichever happens !rst

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A

C T T A C T T A C
Step 3:

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Case (a)

Case (b)

t



Boyer-Moore: Good suffix rule

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Like with the bad character rule, the number of skips possible using the good 
suffix rule can be precalculated into a few tables (Gus!eld 2.2.4 and 2.2.5)

Rule on previous slide is the weak good suffix rule; there is also a strong good 
suffix rule (Gus!eld 2.2.3)

T:
P:

C T T G C C T A C T T A C T T A C T

C T T A C T T A C

t

C T T A C T T A C

C T T A C T T A C

Weak:

Strong:

With the strong good suffix rule (and other minor modi!cations), Boyer-Moore 
is O(m) worst-case time.  Gus!eld discusses proof.

guaranteed 
mismatch!



Boyer-Moore: Putting it together
After each alignment, use bad character or good suffix rule, whichever skips more

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 1:

bc: 6, gs: 0

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 2:

bc: 0, gs: 2

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 3:

bc: 2, gs: 7

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 4:

Bad character rule:
Upon mismatch, let b be the mismatched 
character in T.  Skip alignments until (a) b 
matches its opposite in P, or (b) P moves past b.

Part (a) of good 
suffix rule

Part (b) of good 
suffix rule

Part (a) of bad 
character rule

Good suffix rule:
Let t be the substring of T that matched a suffix of P.  
Skip alignments until (a) t matches opposite characters 
in P, or (b) a pre"x of P matches a suffix of t, or (c) P 
moves past t, whichever happens "rst.

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

b

b

b

t

t



Boyer-Moore: Putting it together

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 1:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 2:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 3:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
Step 4:

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

Up to now: 15 alignments skipped, 11 text characters never examined



Boyer-Moore: Worst and best cases

Boyer-Moore (or a slight variant) is O(m) worst-case time

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

What’s the best case?

Every character comparison is a mismatch, and bad character 
rule always slides P fully past the mismatch

How many character comparisons? !oor(m / n)

Contrast with naive algorithm



Performance comparison

Naïve matchingNaïve matching Boyer-MooreBoyer-Moore

# character 
comparisons wall clock time

# character 
comparisons wall clock time

P: “tomorrow”

T: Shakespeare’s 
complete works

P: 50 nt string 
from Alu repeat*

T: Human 
reference (hg19) 
chromosome 1

Comparing simple Python implementations of naïve exact matching and 
Boyer-Moore exact matching:

* GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

336 matches
| T | = 249 M

17 matches
| T | = 5.59 M5,906,125 2.90 s 785,855 1.54 s

307,013,905 137 s 32,495,111 55 s


