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Min-LCP skipping uses what 
we learn about LCPs to skip 
character comparisons

We can also precompute 
common prefixes between 
suffixes for even more skipping!



Suffix array

Terminology: length of common prefix between a 
query string and a suffix is an LCP

Length of common prefix between two suffixes of the 
same string is an LCE

Longest Common Prefix

Longest Common Extension

We learn about LCPs during binary search; 
we can precompute LCEs
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What if we knew: LCE 
between the two pivots is 2
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We can skip the first 2 character comparisons 
between query and new pivot!
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Suffix array
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What if we knew: LCE 
between the two pivots is 6
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If query was less than the previous pivot, it must be less than 
this pivot too; no character comparisons needed
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Suffix array: less-than case

Say we know the query is less than the previous pivot with 
some LCP.  We also know the LCE between the pivots. 

LCP = LCELCP < LCE LCP > LCE
Skip first LCP characters, 
then continue 
comparisons, updating 
LCP and deciding 
recursion as usual.

Query must also be 
less than next pivot; 
recurse left

Query must be 
greater than next 
pivot; recurse right

New LCP is same as 
old LCP

New LCP is same as 
old LCP

New LCE is between 
red & new pivots

New LCE is between 
blue & new pivots

New LCE will involve 
red pivot



Suffix array: greater-than case

Say we know the query is greater than the previous pivot 
with some LCP.  We also know the LCE between the pivots. 

LCP = LCELCP < LCE LCP > LCE
Skip first LCP characters, 
then continue 
comparisons, updating 
LCP and deciding 
recursion as usual.

Query must also be 
greater than next 
pivot; recurse right

Query must be less 
than next pivot; 
recurse left

New LCP is same as 
old LCP

New LCP is same as 
old LCP

New LCE is between 
red & new pivots

New LCE is between 
blue & new pivots

New LCE will involve 
red pivot
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Skip first LCP characters, 
then continue 
comparisons, updating 
LCP and deciding 
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Query must be 
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Suffix array

We must precompute all possible LCEs that might 
be needed in the previous computation



Suffix array

SA:
LCE-L:+

Store pre-computed LCEs at nodes (pivots), conditioned 
on whether previous pivot was to the left or right

LCE-R:+



Suffix array

SA:
LCE-L:+

Store pre-computed LCEs at nodes (pivots), conditioned 
on whether previous pivot was to the left or right

Approximately triples size of the data structure (!)

LCE-R:+
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Max skipping
Like naive & min-LCP 
strategies, max skipping 
performs  bisectionsO(log m)

Once a character of P matches 
it "stays matched."  
Comparisons in a given round 
don't look back farther than 
the last mismatch. 

Our query time bound 
therefore improves from 

 to O(n log m) O(n + log m)



Suffix array: summary

Naive binary search on suffix array takes  time, 
in contrast to  for suffix tree query

O(n log m)
O(n)

Min-LCP skipping helps, using what we learned in previous 
rounds to skip character comparisons

Requires no additional space beyond SA + T

Not , but efficient in practiceO(n + log m)

Max skipping additionally stores ~2m pre-computed LCEs, 
tripling structure size, but improving time to O(n + log m)



Suffix array: summary

Whether query takes  or  time, 
there's no escaping the ; the price of binary search!

O(n log m) O(n + log m)
log m
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