
Suffix Arrays: maximum skipping
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Suffix array: querying

SA:

ab
ba
ba
b$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

LCP = 2

ababaa

abbabab$
==<---

Query:

Pivot:

Suffix array: querying

SA:

ab
ab
$

ab
ba
ba
b$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

LCP = 2LCP = 4

ababaa

abab$
====>

Query:

Pivot:

Suffix array: querying

SA:

ab
ab
$

ab
ba
ba
b$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

LCP = 2LCP = 4

ababaa

abababbabab$
=====<

Query:

Pivot:

Skip
!

Skip
!

Min-LCP skipping uses what
we learn about LCPs to skip
character comparisons

We can also precompute
common prefixes between
suffixes for even more skipping!

Suffix array

Terminology: length of common prefix between a
query string and a suffix is an LCP

Length of common prefix between two suffixes of the
same string is an LCE

Longest Common Prefix

Longest Common Extension

We learn about LCPs during binary search;
we can precompute LCEs

Suffix array

SA:

ab
ba
ba
b$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

ababaaQuery: ababaa

abbabab$
==<---

Query:

Pivot:

LCP = 2

Suffix array

SA:

ab
ba
ba
b$

ababaaQuery:

LCP = 2

What if we knew: LCE
between the two pivots is 2

ab
..
.

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

We can skip the first 2 character comparisons
between query and new pivot!

Suffix array

SA:

ab
ab
$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

ababaa

abab$
==----

Query:

Pivot:

Suffix array

SA:

ab
ab
$

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

ababaa

abab$
====>-

Query:

Pivot:

LCP = 4

Suffix array

SA:

ab
ab
$

ababaaQuery:

LCP = 4

What if we knew: LCE
between the two pivots is 4

ab
ab
..
.

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

Skip first 4 character comparisons between query
and new pivot!

Suffix array

SA:

ab
ab
$

LCP = 4 ab
ab
..
.

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

ababaa

abababbabab$
====--

Query:

Pivot:

Suffix array

SA:

ab
ab
$

LCP = 4 ab
ab
..
.

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

ababaa

abababbabab$
=====<

Query:

Pivot:

Suffix array

SA:

LCP = 5ab
ab
ab
ba
ba
b$

ababaaQuery:

What if we knew: LCE
between the two pivots is 6

ab
ab
ab
..
.

14 0 12 10 1 3 5 7 13 11 9 2 4 6 8

If query was less than the previous pivot, it must be less than
this pivot too; no character comparisons needed

Suffix array

ababaa

ababababbabab$
=====<

ababaa

ababababbabab$
=====<

ababaa

abababbabab$
=====<

ababaa

abababbabab$
=====<

ababaa

abbabab$
==<---

ababaa

abab$
====>-

ababaa

abbabab$
==<---

ababaa

abab$
====>-

No skipping Min-LCP skipping

Suffix array

ababaa

ababababbabab$
=====<

ababaa

ababababbabab$
=====<

ababaa

abababbabab$
=====<

ababaa

abababbabab$
=====<

ababaa

abbabab$
==<---

ababaa

abab$
====>-

ababaa

abbabab$
==<---

ababaa

abab$
====>-

Min-LCP skipping Max skipping

Suffix array: less-than case

Say we know the query is less than the previous pivot with
some LCP. We also know the LCE between the pivots.

LCP = LCELCP < LCE LCP > LCE
Skip first LCP characters,
then continue
comparisons, updating
LCP and deciding
recursion as usual.

Query must also be
less than next pivot;
recurse left

Query must be
greater than next
pivot; recurse right

New LCP is same as
old LCP

New LCP is same as
old LCP

New LCE is between
red & new pivots

New LCE is between
blue & new pivots

New LCE will involve
red pivot

Suffix array: greater-than case

Say we know the query is greater than the previous pivot
with some LCP. We also know the LCE between the pivots.

LCP = LCELCP < LCE LCP > LCE
Skip first LCP characters,
then continue
comparisons, updating
LCP and deciding
recursion as usual.

Query must also be
greater than next
pivot; recurse right

Query must be less
than next pivot;
recurse left

New LCP is same as
old LCP

New LCP is same as
old LCP

New LCE is between
red & new pivots

New LCE is between
blue & new pivots

New LCE will involve
red pivot

Suffix array: less-than case

Say we know the query is less than the previous pivot with
some LCP. We also know the LCE between the pivots.

LCP = LCELCP < LCE LCP > LCE
Skip first LCP characters,
then continue
comparisons, updating
LCP and deciding
recursion as usual.

Query must also be
less than next pivot;
recurse left

Query must be
greater than next
pivot; recurse right

New LCP is same as
old LCP

New LCP is same as
old LCP

New LCE is between
red & new pivots

New LCE is between
blue & new pivots

New LCE will involve
red pivot

Suffix array

We must precompute all possible LCEs that might
be needed in the previous computation

Suffix array

SA:
LCE-L:+

Store pre-computed LCEs at nodes (pivots), conditioned
on whether previous pivot was to the left or right

LCE-R:+

Suffix array

SA:
LCE-L:+

Store pre-computed LCEs at nodes (pivots), conditioned
on whether previous pivot was to the left or right

Approximately triples size of the data structure (!)

LCE-R:+

Suffix array

ababaa

ababababbabab$
=====<

ababaa

abababbabab$
=====<

ababaa

abbabab$
==<---

ababaa

abab$
====>-

Max skipping
Like naive & min-LCP
strategies, max skipping
performs bisectionsO(log m)

Once a character of P matches
it "stays matched."
Comparisons in a given round
don't look back farther than
the last mismatch.

Our query time bound
therefore improves from

 to O(n log m) O(n + log m)

Suffix array: summary

Naive binary search on suffix array takes time,
in contrast to for suffix tree query

O(n log m)
O(n)

Min-LCP skipping helps, using what we learned in previous
rounds to skip character comparisons

Requires no additional space beyond SA + T

Not , but efficient in practiceO(n + log m)

Max skipping additionally stores ~2m pre-computed LCEs,
tripling structure size, but improving time to O(n + log m)

Suffix array: summary

Whether query takes or time,
there's no escaping the ; the price of binary search!

O(n log m) O(n + log m)
log m

14 0 7 3 12 5 10 1 8 4 13 6 11 2 9

$

a
br

ca
da

br
ad

ad
$ d

$

a

bradad$ d$

ra

cadabradad$ dad$

92

bra d

116

13
4

14

ca
da

br
ad

ad
$ dad$

7

0

cadabradad$

3

$ a

12
bradad$ d$

105

cadabradad$ dad$

81

abracadabradad$

$ abradad$

acadabradad$

ad$

adabradad$

adad$

bracadabradad$

bradad$

cadabradad$

d$ dabradad$

dad$

racadabradad$

radad$

