Suffix Trees: building

Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ ® | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Suffix tree: building

Method 1: build suffix trie

() S
a b
3, OC
b
0000
00 00
0000
00 e

Suffix tree: building

Method 1: build suffix trie, coalesce non-branching paths

() $
a b
O, 0OC
b a
O OO0
b, a a$
00, OC
ay a b
sJelele
a
O O
a
0O O

Suffix tree: building

Method 1: build suffix trie, coalesce non-branching paths, label

() $
a b
S, OC
b

Building this is

O(m?2) time, O(m?2) space
the bottleneck

Suffix tree: building

Instead of starting with a big trie and making it smaller,
we can start from scratch and "grow" the tree

(0, 7) (0, 7) (1, 6)

At no point do we have something larger than the final tree,
so it must be O(m) at all points

Suffix tree: building

Build single-
edge tree with
longest suffix

Add § Add

2nd-longest 3rd-longest et

(0, 1)

3,4

Suffix tree: building

Few steps of “method 2" T = abaaba$

Just longest Longest + 2nd + 3rd

Suffix tree: building

Few steps of “method 2" T = abaaba$

Just longest Longest + 2nd + 3rd

O

d

b

Suffix tree: building

Few steps of “method 2”

Just longest Longest + 2nd

O O~

a a

b b

T = abaaba$

+ 3rd

Suffix tree: building

Few steps of “method 2” T = abaaba$
Just longest Longest + 2nd + 3rd
O ONb O~ b
a a d
a a
b b b
a a
a a
° b b
a a a
a a
b b b
a > a >
a
O O
S S S

Suffix tree: building

Few steps of “method 2" T = abaaba$
Just longest Longest + 2nd + 3rd Each step
adds 1 or 2
O Q b new nodes
a a
a
b b 3 possibly 1
5 internal
a a
b
a a
a
b b
a a >
O 1 leaf
S S

Suffix tree: building

Though tree only grows by 1 or 2

Oa b nodes in each step, work is dominated
a O \a by the need to "walk down" for each
b b suffix
d

a a y
S a _ O(m?2) time overall

b

] S

O
S

Suffix tree: building

Method 2: build single-edge tree
representing longest suffix,
augment to include the 2nd-
longest, augment to include 3rd-
longest, etc

O(m?2) time, O(m) space

Ukkonen's algorithm

Algorithmica (1993) 14: 249-260

Algorithmica

©) 1995 Springer-Yerlag New York Inc.

On-Line Construction of Suffix Trees!
E. Ukkonen?

Abstract. An on-line algonthm is presented for constructing the suffix tree for a given string in time
linear in the length of the string. The new algorithm has the desirable property of processing the string
symbol by symbol from left to right. It always has the suffix tree for the scanned part of the string
ready. The method is developed as a linear-time version of a very simple algorithm for (quadratic size)
suffix zries. Regardless of its quadratic worst case this latter algorithm can be a good practical method
when the string i1s not too long. Another vanation of this method 15 shown to give, in a natural way,
the well-known algorithms for constructing suffix automata (DAWGs),

Key Words. Linear-time algorithm, Suffix tree, Suffix trie, Suffix automaton, DAWG.

Figure from: Ukkonen, E. (1995). "On-line construction of suffix
trees" Algorithmica. 14 (3): 249-260. doi:10.1007/BF01206331

Ukkonen's algorithm

Too complex to detail here, but ~ “s/f © yj
/¥

you should know:

O(m) time and space

It is the most widely used, cacar &
though not the only algorithm ;ﬁ
with O(m) time & space | f/ 3}\&
Also starts from scratch and ¥ N
builds up to full tree v

Uses and outputs
"suffix links," to be
discussed later

/

7

Fig. 1. Construction of S7Trie(cacao): state transitions shown in bold
arrows, failure transitions in thin arrows. Note: Only the last two layers of

suffix links shown explicitly.

Figure from: Ukkonen, E. (1995). "On-line construction of suffix
trees" Algorithmica. 14 (3): 249-260. doi:10.1007/BF01206331

Building suffix trees: summary

Good methods exist that build the suffix tree incrementally
from scratch, eventually reaching the O(m)-size tree

Our "Method 2" does this quite simply, but needs O(m?) time

Ukkonen's algorithm is the most widely used

