Suffix Trees: definition & size

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Suffix trie grows quadratically with string

Human genome is 3 · 10⁹ bases long

If $m = 3 \cdot 10^9$, m^2 is far beyond what we can store in memory

When no node has an "only child," we can bound the total # nodes in terms of the # leaves, m

In a **binary** tree, where each non-leaf has **exactly** 2 children, the # of non-leaves = m - 1

In a **binary** tree, where each non-leaf has **exactly** 2 children, the # of non-leaves = m - 1

In a **binary** tree, where each non-leaf has **exactly** 2 children, the # of non-leaves = m - 1

If we allow non-leaves to have >2 children, then the number of leaves only increases relative to non-leaves

If we allow non-leaves to have >2 children, then the number of leaves only increases relative to non-leaves

If we allow non-leaves to have >2 children, then the number of leaves only increases relative to non-leaves

leaves **m** # non-leaf nodes

If we allow non-leaves to have >2 children, then the number of leaves only increases relative to non-leaves

leaves **m** # non-leaf nodes ≤ **m** - 1

Call this the "no-only-child" principle

T = abaaba\$ |T| = m

No-only-child principle # non-leaf nodes

ls *total* space O(m) now?

leaves?

No: total length of edge **labels** grows with m^2

 $\leq 2m$ -1 nodes total — O(m)

<u>Idea 2</u>: Store *T* itself in addition to the tree. Convert edge labels to (offset, length) pairs with respect to *T*.

T = abaaba\$

<u>Idea 2</u>: Store *T* itself in addition to the tree. Convert edge labels to (offset, length) pairs with respect to *T*.

 $T = \underline{\mathbf{a}}$ baaba\$

<u>Idea 2</u>: Store *T* itself in addition to the tree. Convert edge labels to (offset, length) pairs with respect to *T*.

T = abaaba

<u>Idea 2</u>: Store *T* itself in addition to the tree. Convert edge labels to (offset, length) pairs with respect to *T*.

T = abaaba\$

<u>Idea 2</u>: Store *T* itself in addition to the tree.

Convert edge labels to (offset, length) pairs with respect to T.

Total space is now O(m) \bigvee Suffix trie was $O(m^2)!$

T = abaaba\$

Suffix tree: leaves hold offsets

Suffix tree: leaves hold offsets

Suffix tree: leaves hold offsets

Label = "aaba\$", the suffix at offset 2

Suffix tree: depth & labels

Two notions of depth:

- Node depth: # edges from root to node
- Label depth: total length of edge labels from root to node

Suffix tree: depth & labels

Two notions of depth:

- Node depth: # edges from root to node
- Label depth: total length of edge labels from root to node

Label depth = 2 + 4 = 6

Suffix tree: actual growth

Suffix trees built for first 500 prefixes of the lambda phage virus genome

Remember suffix trie plot:

Suffix tree: actual growth

Suffix trees built for first 500 prefixes of the lambda phage virus genome

Remember suffix trie plot:

>100K nodes

Suffix tree

<1K nodes

