Suffix Trees: definition & size

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Suffix trie

Suffix trie grows
quadratically with string

Human genome is 3 -107
bases long

Ifm=3-109 m2isfar
beyond what we can
store in memory

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

— m(m+1)/2
— gctual
— 2M+2

0 100 200 300 400

Length prefix over which suffix trie was built

500

Suffix trie: making it smaller

T = abaaba$

Suffix trie: making it smaller

T = abaaba$

Suffix trie: making it smaller

T = abaaba$

ldea 1: Coalesce non-branching
paths into a single edge with a
string label

—~—

Suffix trie: making it smaller

T = abaaba$

ldea 1: Coalesce non-branching
paths into a single edge with a
string label

—~—
S

O

Reduces # nodes, edges

Guarantees non-leaf nodes have
>1 child

Suffix trie: making it smaller

T = abaaba$
(8

® 00
CCCC
CC CC
CCCC
00

O

0,50,

Suffix trie: making it smaller

T = abaaba$
(T8

C, OC
0000 -
00 oYe
0000
oo C

? ®

Suffix trie: making it smaller

T = abaaba$ ‘ ¢
: b ‘

C C (O 3

C C (O C —

‘ S S
00 00 aba$/" \ba $
QQQQ O OO O C
“ ‘ C{abaSS
a S ‘
(O

Suffix trie: making it smaller

T = abaaba$

Suffix tree

When no node has an
"only child," we can bound
the total # nodes in terms
of the # leaves, m

Suffix tree

In a binary tree, where each non-leaf has exactly 2
children, the # of non-leaves =m- 1

Suffix tree

In a binary tree, where each non-leaf has exactly 2
children, the # of non-leaves =m- 1

Suffix tree

In a binary tree, where each non-leaf has exactly 2
children, the # of non-leaves =m- 1

Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

4 5 6 /
() ® () @

G
STe
W Q

C
e
o
N Q

O C
8 9

Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

leaves m
non-leaf nodes

Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

leaves m
non-leaf nodes <m-1

O @ o O O
5 6 / 8 9

Call this the "no-only-child"
principle

Suffix tree

T=abaabas [T]=m No-only-child
principle
(L~

a ba (U # leaves? m

() () # non-leaf nodes <m-1
abas/ \pa \° abas N\ < 2m -1 nodes total — O(m)
O OO O C
abaS \$

s total space No: total length of edge
O(m) now? labels grows with m?

Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.

T = abaaba$

Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.

T = abaaba$

Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.

T = abaaba$

Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.

(—(6,1)
0.1/ 1. O
g ()61 (WO—y6.1)
(3.4)7 11,2 (3, 4)
O OO O C
(3.4) \6. 1)
(O

T = abaaba$

Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.

(—(6,1)
0.1/ 1.2\
g ((6, 1) (J—6.1)
3.4} \11, 2 3. 4)
O OO O C
(3.4) \6. 1)
(U
Total space is now O(m) T = abaaba$

Suffix trie was O(m?2)!

Suffix tree: leaves hold offsets

(—6,1)
0.1/ 0N [
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
O L L] L
(3.4 \6.1)

Suffix tree: leaves hold offsets

(—6,1)
0.1/ 0N [
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
O L L] L
(3.4 \6.1)

Suffix tree: leaves hold offsets

(—6,1)
0.1/ 0N [6
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
(_
(3.4 \6.1)

Suffix tree

T = abaaba$s ()—61
0.1/ 1N |6
(J)—_6.1) UW—26.1
3.4} \1,2) (3, 4)

(

(3.4 \6.1)

Suffix tree

T= abaaba$ uan ‘ (6' 1)
(0, 1) (1.2) E

“abas" () (6, 1) ()—(6.1)
3.4 11, 2) (3, 4)

Label ="aaba$” the suffix at offset 2

Suffix tree: depth & labels

()—(6.1) Two notions of depth:
OV 4.2 6 » Node depth: # edges
from root to node
. (J)—6,1) (W—61)
' 1. 2] (3.4) o Label depth: total length
() of edge labels from root
to node
(3,4) \6.1)

Suffix tree: depth & labels

‘ 6. 1) Two notions of depth:
0.1/ 1 5) 6 « Node depth: # edges
from root to node
5 (J—6.1 (W—61
' (1,2) (3. 4) « Label depth: total length

‘ of edge labels from root
(3,4) \6.1) \ to node

Node depth =2
Label depth=2+4=6

Suffix tree: actual growth

Suffix trees built for
first 500 prefixes of the

lambda phage virus

genome

Remember suffix trie plot:

20000 40000 60000 80000 100000 120000

0

0 100 200 300 400 500

Length prefix over which suffix trie was built

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—6— Qgctual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

Suffix tree: actual growth

Suffix trees built for
first 500 prefixes of the

lambda phage virus

genome

Remember suffix trie plot:

20000 40000 60000 80000 100000 120000

0

0 100 200 300 400 500

Length prefix over which suffix trie was built

suffix tree nodes

123 K
nodes

400 600 800 1000

200

2m

—6— Qgctual
e m

I I I I I
0 100 200 300 400

Length prefix over which suffix tree was built

500

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

Suffix trie
>100K nodes

= m(m+1)/2
— gctual
— 2M+2

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

suffix tree nodes

400 600 800 1000

200

Suffix tree

<1K nodes

2m
—6— actual
e m

I I I I
100 200 300 400

Length prefix over which suffix tree was built

500

