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Suffix trie

Suffix trie grows
quadratically with string

Human genome is 3 -107
bases long

Ifm=3-109 m2isfar
beyond what we can
store in memory
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Suffix trie: making it smaller

T = abaaba$

ldea 1: Coalesce non-branching
paths into a single edge with a
string label

—~—
S

O

Reduces # nodes, edges

Guarantees non-leaf nodes have
>1 child
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Suffix trie: making it smaller
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Suffix trie: making it smaller

T = abaaba$




Suffix tree

When no node has an
"only child," we can bound
the total # nodes in terms
of the # leaves, m
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number of leaves only increases relative to non-leaves
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Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

# leaves m
# non-leaf nodes



Suffix tree

If we allow non-leaves to have >2 children, then the
number of leaves only increases relative to non-leaves

# leaves m
# non-leaf nodes <m-1
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Call this the "no-only-child"
principle



Suffix tree

T=abaabas  [T]=m No-only-child
principle
(L~
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s total space No: total length of edge
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Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.
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Suffix tree

ldea 2: Store T itself in addition to the tree.
Convert edge labels to (offset, length) pairs with respect to T.
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Total space is now O(m) T = abaaba$

Suffix trie was O(m?2)!



Suffix tree: leaves hold offsets

( —6,1)
0.1/ 0N [
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
O L L] L
(3.4 \6.1)




Suffix tree: leaves hold offsets

( —6,1)
0.1/ 0N [
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
O L L] L
(3.4 \6.1)




Suffix tree: leaves hold offsets

( —6,1)
0.1/ 0N [6
() (6, 1) (J)—(6.1)
> 347 \1,2 3, 4)
(_
(3.4 \6.1)




Suffix tree
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Suffix tree

T= abaaba$ uan ‘ (6' 1)
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Label ="aaba$” the suffix at offset 2



Suffix tree: depth & labels
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Suffix tree: depth & labels

‘ 6. 1) Two notions of depth:
0.1/ 1 5) 6 « Node depth: # edges
from root to node
5 (J—6.1 (W—61
' (1,2) (3. 4) « Label depth: total length

‘ of edge labels from root
(3,4) \6.1) \ to node

Node depth =2
Label depth=2+4=6



Suffix tree: actual growth

Suffix trees built for
first 500 prefixes of the
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# suffix trie nodes
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