Suffix Tries Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Suffix trie

Build a trie containing all suffixes of a text T

T: gttatagctgatcgcgecgtagcge\$
G T TATAGCTGATCGCGGCGTAGCGG\$ T TATAGCTGATCGCGGCGTAGCGG\$ TATAGCTGATCGCGGCGTAGCGG\$
ATAGCTGATCGCGGCGTAGCGG\$ TAGCTGATCGCGGCGTAGCGG\$ A GCTGATCGCGGCGTAGCGG\$ G C T G A T C G C G G C G TAGCGG\$

CTGATCGCGGCGTAGCGG\$
TGATCGCGGCGTAGCGG\$ G A T C GCGGCGTAGCGG\$ ATCGCGGCGTAGCGG\$ tCGCGGCGTAGCGG\$ chars C G C G G C G TAGCGG\$
G C G G C G T A G C G G \$ C G G C G T A G C G G \$ G G C G TAGCGG\$ GC G TAGCGG\$ C G TAGCGG\$ G T A G C G G \$ TAGCGG\$ A G C G G \$
G C G G \$

Suffix trie

First add special terminal character $\boldsymbol{\$}$ to the end of T
$\mathbf{\$}$ is a character that does not appear elsewhere in T, and we define it to be less than other characters ($\mathbf{\$}<\mathbf{A}<\mathbf{C}<\mathbf{G}<\mathbf{T}$)
\$ enforces a familiar rule: e.g. "as" comes before "ash" in the dictionary. \$ also guarantees no suffix is a prefix of any other suffix.

```
T: GTTATAGCTGATCGCGGCGTAGCGG$
    GTTATAGCTGATCGCGGCGTAGCGG$
    TTATAGCTGATCGCGGCGTAGCGG$
        TATAGCTGATCGCGGCGTAGCGG$
        ATAGCTGATCGCGGCGTAGCGG$
            TAGCTGATCGCGGCGTAGCGG$
            AGCTGATCGCGGCGTAGCGG$
                GCTGATCGCGGCGTAGCGG $
                    CTGATCGCGGCGTAGCGG$
                    TGATCGCGGCGTAGCGG$
                        GATCGCGGCGTAGCGG$
                            ATCGCGGCGTAGCGG$
                            TCGCGGCGTAGCGG$
                            C GCGGCGTAGCGG$
                                    GCGGCGTAGCGG$
                            CECretMrcerd
```


Suffix trie

T: aba\$

Suffix trie:

Suffix trie

T: aba\$
Suffix trie:

Suffix trie

T: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added $\boldsymbol{\$}$?

Suffix trie

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added $\boldsymbol{\$}$? No

Suffix trie

T: abaaba\$

We need the $\mathbf{\$}$ for this property:
Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Suffix trie

Think of each node as having a label, spelling out characters on path from root to node

Suffix trie

Think of each node as having a label, spelling out characters on path from root to node

Suffix trie

How do we check whether a string S is a substring of T ?

A substring is a prefix of a suffix
T :

Each of T 's substrings is a prefix of a suffix, and so is spelled out along a path from the root.

T: abaaba\$

Suffix trie

How do we check whether a string S is a substring of T ?

$$
S=\text { baa }
$$

T: abaaba\$

Suffix trie

To check whether a string S is a substring of T :

Start at root and follow edges labeled with the characters of S

If we "fall off," S is not a substring
If we exhaust S without falling off, S is a substring of T

Reasonable to assume $O(n)$ time where $|S|=n$

Suffix trie

How do we count the number of times a string S occurs as a substring of T ?

Say $S=a b$
Let n be the node we reach after "walking down" according to S

The sulbtree rooted at n holds suffixes for which S is a prefix

2 leaves in the subtree, so 2 suffixes for which S is a prefix $=2$ occurrences!

Suffix trie

How do we count the number of times a string S occurs as a substring of T ?

Walk down according to S. If we fall off, answer is 0 .

Otherwise, if we ended at node n, answer = \# of leaves in subtree rooted at \boldsymbol{n}.

Leaves can be counted with depth-first traversal.

Suffix trie

How do we find the longest repeated substring of T ?

Find the deepest node with more than one child

