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Space usage revisited

We said the fill step requires O(mn) space
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Can we do better?

Assume we're only interested
in cost / score in lower right-
hand cell
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Space usage revisited
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Space usage revisited

ldea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)
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<— Discard this row...

<«— ...once we begin this row

Only keeping O(1) rows at a
time, space bound becomes
O(min(n, m)) -- linear space
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Space usage revisited

ldea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)
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We get desired value / score, by
looking in the lower right cell
(global alignment)
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Space usage revisited

More savings: discard elements as soon as they’re no longer needed
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Discard this element
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Once we fill this element
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Space usage revisited

Can we get both the optimal score and the alignment in linear space?

For global alignment, we can...
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Space usage revisited: subdividing matrix

Assume global alignment. ldea: Split matrix into left half, filled as usual, and right
half, filled “backwards.” In both halves, only store current, previous columns.

Find Vi, j]s for
successively longer
prefixes of xand y

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Vi, jls

V'li, fls

Find V'[i, jls for
successively longer
suffixes of xand y



Space usage revisited: subdividing matrix

/

V'li, jls

After fill, we have the
center 2 columns

514
5|5 Given nearby cells from each
46 column, we can calculate value for
216 optimal global alignment passing
413
=2 through those cells

3

<« Opimal such value indicates where
5 alignment crosses the center
5|5
i s Repeat recursively to solve the
al1 entire problem, including backtrace,
2|3 in O(mn) time and linear space
43
> (3 Hirschberg’s algorithm  See Gusfield 12.1
5|3
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Data parallelism: SIMD operations
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Parallel 8bit addition

SIMD: Single Instruction, Multple Data

e e o A SIMD operation performs several
e N OperatiOnS at once on vectors of
| ox£c | ox6£ | 0x08 | 0x50 [ 0x0£ [ 0x3e | 0x1c | 0xas
== operands
m=38
m=16
et L e et etk comparion One instruction on a modern CPU
| r@j l rg@:_wl | /\@‘L | rgn‘lfé‘é’n?é;‘;’sm can add two vectors of 8 16-bit
N numbers quickly:
| oxeeee | oxoo00 | oxfeee | oxoooo |
m=16 134145 |1 14 | 73 | 86 |782]| 67 | 36
0x£646 | o0xsbos | 0x7£78 |  o0xases | TYPE-2
/ 16bit data shuffling +
| e 7 (952 65(33| 6 56| 5|3
| ox7£78 | ox4s68 | oxsoas | oxsea7 | —
http://www.coins-project.org/international/COINSdoc.en/simd/simd.html 1411997 79 |106]| 92 |838| 72 39
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Data parallelism

Can we take advantage of these operations when filling the matrix?
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Data parallelism

Yes, dynamic programming has “data parallelism”

E.g. cells in red are calculated in the same way: different inputs but

same operations. None depend on the others.

Things we do when filling in a
cell: add, max, etc, can be
packed into vectors and done
for many cells in parallel:
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Data parallelism

Variations on this idea are quite practical and used a lot in practice

Biosci. 1997 Apr;13(2):145-50.

Farrar M. Striped Smith-Waterman speeds database
C searches six times over other SIMD
implementations. Bioinformatics. 2007 Jan 15;23(2):
156-61.

Rognes T. Faster Smith-Waterman database searches
D with inter-sequence SIMD parallelisation. BMC
Bioinformatics. 2011 Jun 1;12:221.
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Figure from: Rognes T. Faster Smith-Waterman database searches with
inter-sequence SIMD parallelisation. BMC Bioinformatics. 2011 Jun 1;12:221.

Wozniak A. Using video-oriented instructions to speed up sequence comparison. Comput Appl

Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence database searches using
parallel processing on common microprocessors. Bioinformatics. 2000 Aug;16(8):699-706.
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Dynamic programming summary

« Edit distance is harder to calculate than Hamming distance, but there is a O(mn) time
dynamic progamming algorithm

« Global alignment generalizes edit distange to use a cost function
 Slight tweaks to global alignment turn it into an algorithm for:

e Longest Common Subsequence

« Finding approximate occurrencesof PinT

Local alignment also has a O(mn)-time dynamic programming solution

Further efficiencies are possible:

« If noalignmentis needed, global/local alignment can be made linear-space
« Evenifalignmentis needed, global alignment can be made linear-space with Hirschberg

e SIMD instructions can fill in chunks of cells at a time

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman algorithm#Accelerated versions
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