Dynamic programming
in less time and space

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

N o >0 00 X>» —n

Space usage revisited

We said the fill step requires O(mn) space

T

AT GT CATGUC

8

16

24

32

40

48

56

64

72

380

%)

8

16

24

32

49

48

56

64

72

16

8

%)

8

16

24

32

490

48

56

64

24

16

8

2

10

18

24

32

40

48

56

32

24

16

10

2

10

18

26

34

490

48

49

32

24

16

10

2

10

18

26

34

42

48

40

32

24

18

10

2

10

18

26

34

56

48

40

32

26

18

10

2

10

18

26

64

56

48

4@

32

26

18

10

6

10

18

72

64

56

48

40

34

26

18

12

10

10

Can we do better?

Assume we're only interested
in cost / score in lower right-
hand cell

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

N o >0 00 X>» —n

Space usage revisited

€

T AT GTOCATGUC

8

16

24

32

49

48

56

64

72

380

%)

8

16

24

32

49

48

56

64

72

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

N o >0 00 X>» —n

Space usage revisited

ldea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

T AT GTOCATGUC

8

16

24

32

40

48

56

64

72

30

%)

8

16

24

32

49

48

56

64

72

v 00| ®| m

<— Discard this row...

<«— ...once we begin this row

Only keeping O(1) rows at a
time, space bound becomes
O(min(n, m)) -- linear space

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

N o >0 00 X>» —n

Space usage revisited

ldea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

€

T AT GTOCATGUC

64

56

48

49

32

26

18

10

10

18

72

64

56

48

40

34

26

18

12

10

10

We get desired value / score, by
looking in the lower right cell
(global alignment)

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

N o >0 00 X>» —n

Space usage revisited

More savings: discard elements as soon as they’re no longer needed

€

24

32

49

48

56

64

72

16

16

24 1

Discard this element

T AT G T/C A T G C

Once we fill this element

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Space usage revisited

Can we get both the optimal score and the alignment in linear space?

For global alignment, we can...

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Space usage revisited: subdividing matrix

Assume global alignment. ldea: Split matrix into left half, filled as usual, and right
half, filled “backwards.” In both halves, only store current, previous columns.

Find Vi, j]s for
successively longer
prefixes of xand y

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Vi, jls

V'li, fls

Find V'[i, jls for
successively longer
suffixes of xand y

Space usage revisited: subdividing matrix

/

V'li, jls

After fill, we have the
center 2 columns

514
5|5 Given nearby cells from each
46 column, we can calculate value for
216 optimal global alignment passing
413
=2 through those cells

3

<« Opimal such value indicates where
5 alignment crosses the center
5|5
i s Repeat recursively to solve the
al1 entire problem, including backtrace,
2|3 in O(mn) time and linear space
43
> (3 Hirschberg’s algorithm See Gusfield 12.1
5|3
JOHNS HOPKINS
WHITING SCHOOL

of ENGINEERING

Data parallelism: SIMD operations

n=64
e,

r

0x2d | 0x46 [0x04 | 0x78 | 0x68 | ox££ | 0x2b| 0x£c
N 3

TYPE-1

'

CRICRICReRe

®

Parallel 8bit addition

SIMD: Single Instruction, Multple Data

e e o A SIMD operation performs several
e N OperatiOnS at once on vectors of
| ox£c | ox6£ | 0x08 | 0x50 [0x0£ [0x3e | 0x1c | 0xas
== operands
m=38
m=16
et L e et etk comparion One instruction on a modern CPU
| r@j l rg@:_wl | /\@‘L | rgn‘lfé‘é’n?é;‘;’sm can add two vectors of 8 16-bit
N numbers quickly:
| oxeeee | oxoo00 | oxfeee | oxoooo |
m=16 134145 |1 14 | 73 | 86 |782]| 67 | 36
0x£646 | o0xsbos | 0x7£78 | o0xases | TYPE-2
/ 16bit data shuffling +
| e 7 (952 65(33| 6 56| 5|3
| ox7£78 | ox4s68 | oxsoas | oxsea7 | —
http://www.coins-project.org/international/COINSdoc.en/simd/simd.html 1411997 79 |106]| 92 |838| 72 39

JOHNS HOPKINS

WHITING SCHOOL

of ENGINEERING

http://www.coins-project.org/international/COINSdoc.en/simd/simd.html
http://www.coins-project.org/international/COINSdoc.en/simd/simd.html

Data parallelism

Can we take advantage of these operations when filling the matrix?

04 | 0x78 | 0x68 | ox££ [0x2b [ox£c | TYPE-1
))

t

&

f

' Parallel 8bit addition
'('P/ +/
t

" \—*.

9 |lox04 [fox

dBIOxa?I x3£ [jox£1 [Joxas |

N \\

(O © G
0
N

I fll" ffl "18]"1 "1[’1

N
Izl1

L

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

o060 r» -

o | —

16

48

56

16

24

32

40

48

56

64

72

Data parallelism

Yes, dynamic programming has “data parallelism”

E.g. cells in red are calculated in the same way: different inputs but

same operations. None depend on the others.

Things we do when filling in a
cell: add, max, etc, can be
packed into vectors and done
for many cells in parallel:

n=64
e

:
| 0x24 | 0x46 | 0x04 | 0x78 | 0x68 [0x££ | 0x2b | 0x£c| TYPE-1
N j

¥ 1 ! Parallel 8bit addition
ererererererere
|loxcs [lox29 [jox04 [Joxds [foxa7 |joxaz [Joxe1 |Joxas |

|}
NN g oy

Y N N
| ox£c | ox6£ | 0x08 | 0x50 | 0x0£ [0x3e | 0x1c [0xas
\ﬂ—J

G
+

m=38

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

o060 r» -

T AT GTOCATGUC

O0(8116/24(32|40|48(56(64|72|80
810 |8(16(24|32

16 8 10 | 8 |16

24(16| 8 | 2

32(24|16

40|32

48

56

64

72

Data parallelism

Variations on this idea are quite practical and used a lot in practice

Biosci. 1997 Apr;13(2):145-50.

Farrar M. Striped Smith-Waterman speeds database
C searches six times over other SIMD
implementations. Bioinformatics. 2007 Jan 15;23(2):
156-61.

Rognes T. Faster Smith-Waterman database searches
D with inter-sequence SIMD parallelisation. BMC
Bioinformatics. 2011 Jun 1;12:221.

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

A
database sequence(s)
Q 7 74 7
C / /, /,
S W
= \ \ \
)]
5)))
Q |8 ,
5
\ \ \
(@)
® 7/ 7/ 7/
/ / /
/ / /
N N N

Figure from: Rognes T. Faster Smith-Waterman database searches with
inter-sequence SIMD parallelisation. BMC Bioinformatics. 2011 Jun 1;12:221.

Wozniak A. Using video-oriented instructions to speed up sequence comparison. Comput Appl

Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence database searches using
parallel processing on common microprocessors. Bioinformatics. 2000 Aug;16(8):699-706.

HEEEEEEEEEEEEEEEEEEEN

HEEEN

l

LT

HEEEN

l

~

NA

7

Dynamic programming summary

« Edit distance is harder to calculate than Hamming distance, but there is a O(mn) time
dynamic progamming algorithm

« Global alignment generalizes edit distange to use a cost function
 Slight tweaks to global alignment turn it into an algorithm for:

e Longest Common Subsequence

« Finding approximate occurrencesof PinT

Local alignment also has a O(mn)-time dynamic programming solution

Further efficiencies are possible:

« If noalignmentis needed, global/local alignment can be made linear-space
« Evenifalignmentis needed, global alignment can be made linear-space with Hirschberg

e SIMD instructions can fill in chunks of cells at a time

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman algorithm#Accelerated versions

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions
http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions

