

Dynamic programming in less time and space

Ben Langmead

JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you're using them. For original Keynote files, email me.

Space usage revisited

We said the fill step requires $O(mn)$ space

	ϵ	T	A	T	G	T	C	A	T	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32	40	48	56	64	72
A	16	8	0	8	16	24	32	40	48	56	64
C	24	16	8	2	10	18	24	32	40	48	56
G	32	24	16	10	2	10	18	26	34	40	48
T	40	32	24	16	10	2	10	18	26	34	42
C	48	40	32	24	18	10	2	10	18	26	34
A	56	48	40	32	26	18	10	2	10	18	26
G	64	56	48	40	32	26	18	10	6	10	18
C	72	64	56	48	40	34	26	18	12	10	10

Can we do better?

Assume we're only interested in cost / score in lower right-hand cell

Space usage revisited

	ϵ	T	A	T	G	T	C	A	T	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32	40	48	56	64	72
A											
C											
G											
T											
C											
A											
G											
C											

Space usage revisited

Idea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

	ϵ	T	A	T	G	T	C	A	T	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32	40	48	56	64	72
A	?										
C											
G											
T											
C											
A											
G											
C											

← Discard this row...

← ...once we begin this row

Only keeping $O(1)$ rows at a time, space bound becomes $O(\min(n, m))$ -- linear space

Space usage revisited

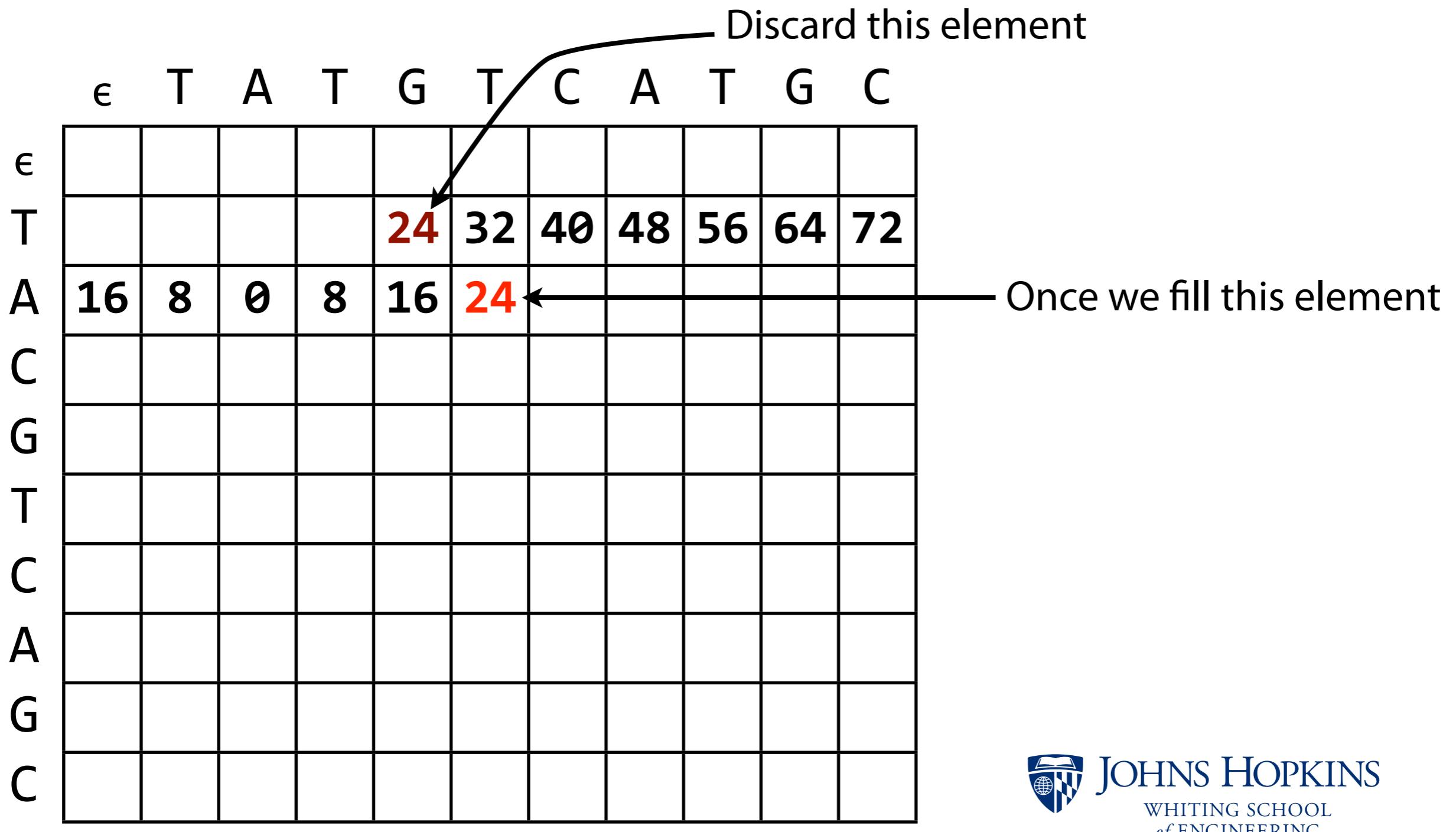
Idea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

		ε	T	A	T	G	T	C	A	T	G	C
ε												
T												
A												
C												
G												
T												
C												
A												
A												
G	64	56	48	40	32	26	18	10	6	10	18	
C	72	64	56	48	40	34	26	18	12	10	10	

We get desired value / score, by looking in the lower right cell (global alignment)

Space usage revisited

More savings: discard *elements* as soon as they're no longer needed



Space usage revisited

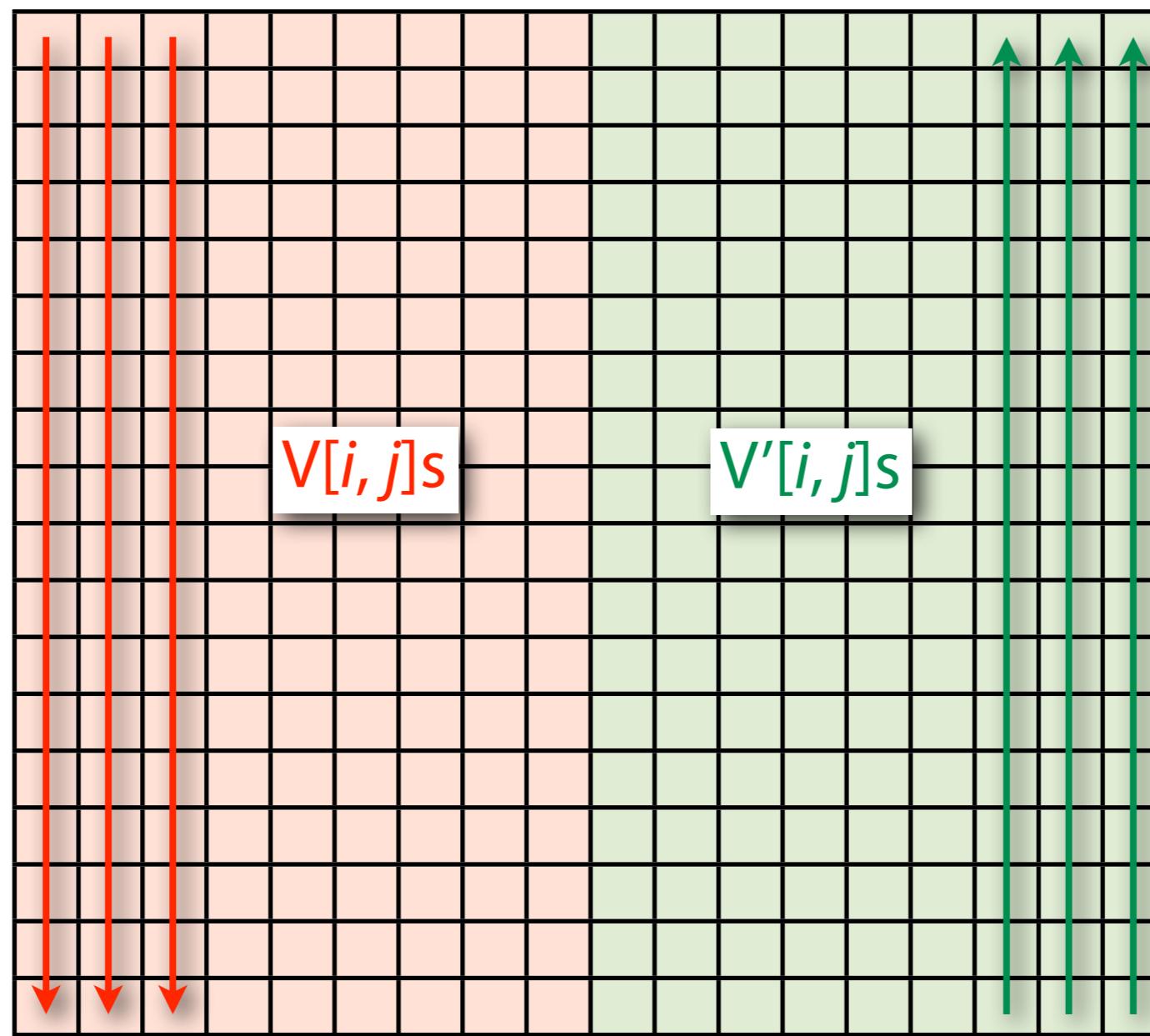
Can we get both the optimal score *and the alignment* in linear space?

For global alignment, we can...

Space usage revisited: subdividing matrix

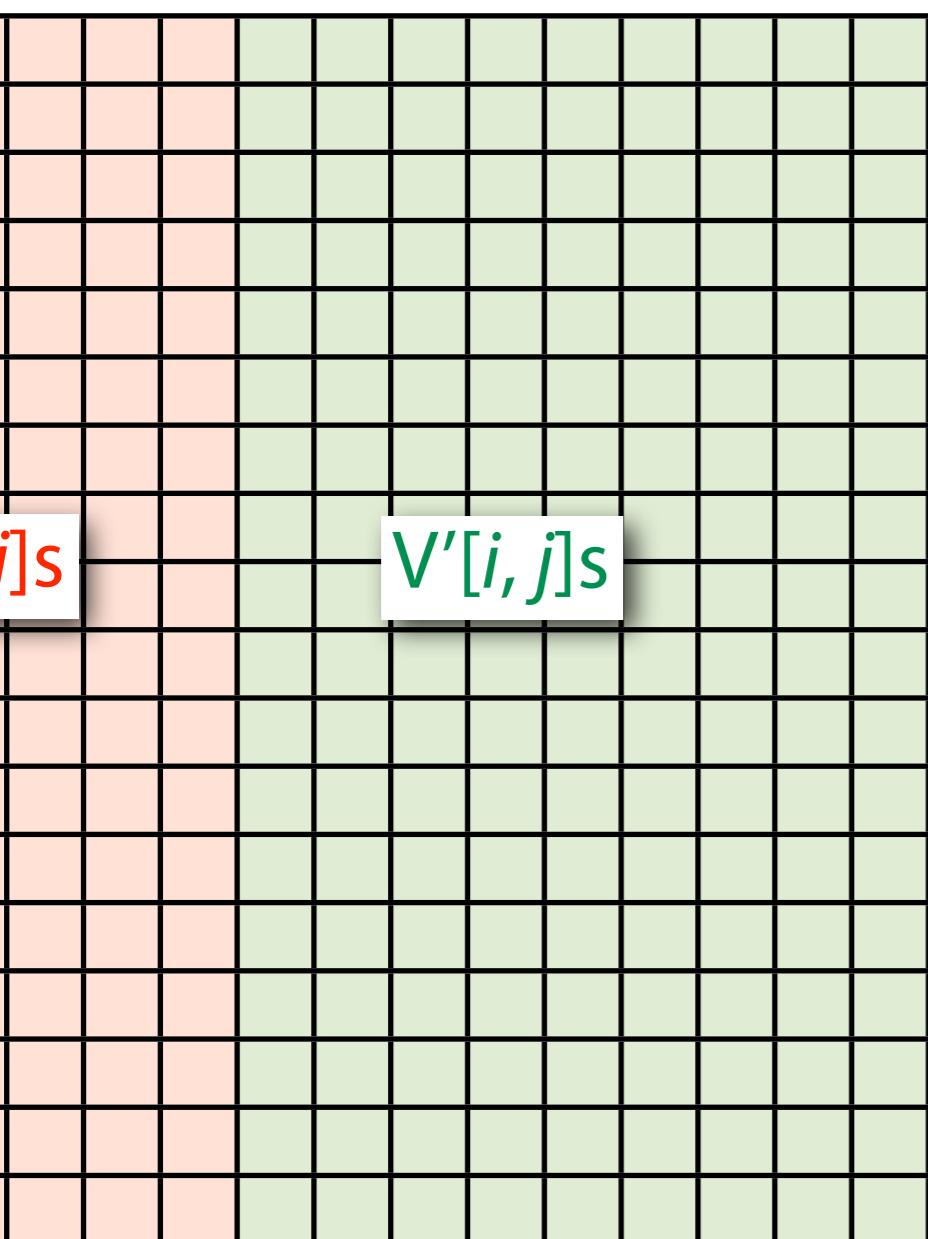
Assume global alignment. Idea: Split matrix into left half, filled as usual, and right half, filled “backwards.” In both halves, only store current, previous columns.

Find $V[i, j]$ s for
successively longer
prefixes of x and y



Find $V'[i, j]$ s for
successively longer
suffixes of x and y

Space usage revisited: subdividing matrix



After fill, we have the
center 2 columns

5	4
5	5
4	6
2	6
4	3
5	2
1	3
1	4
4	1
5	4
5	5
3	6
4	7
4	1
2	3
4	3
5	3
5	3

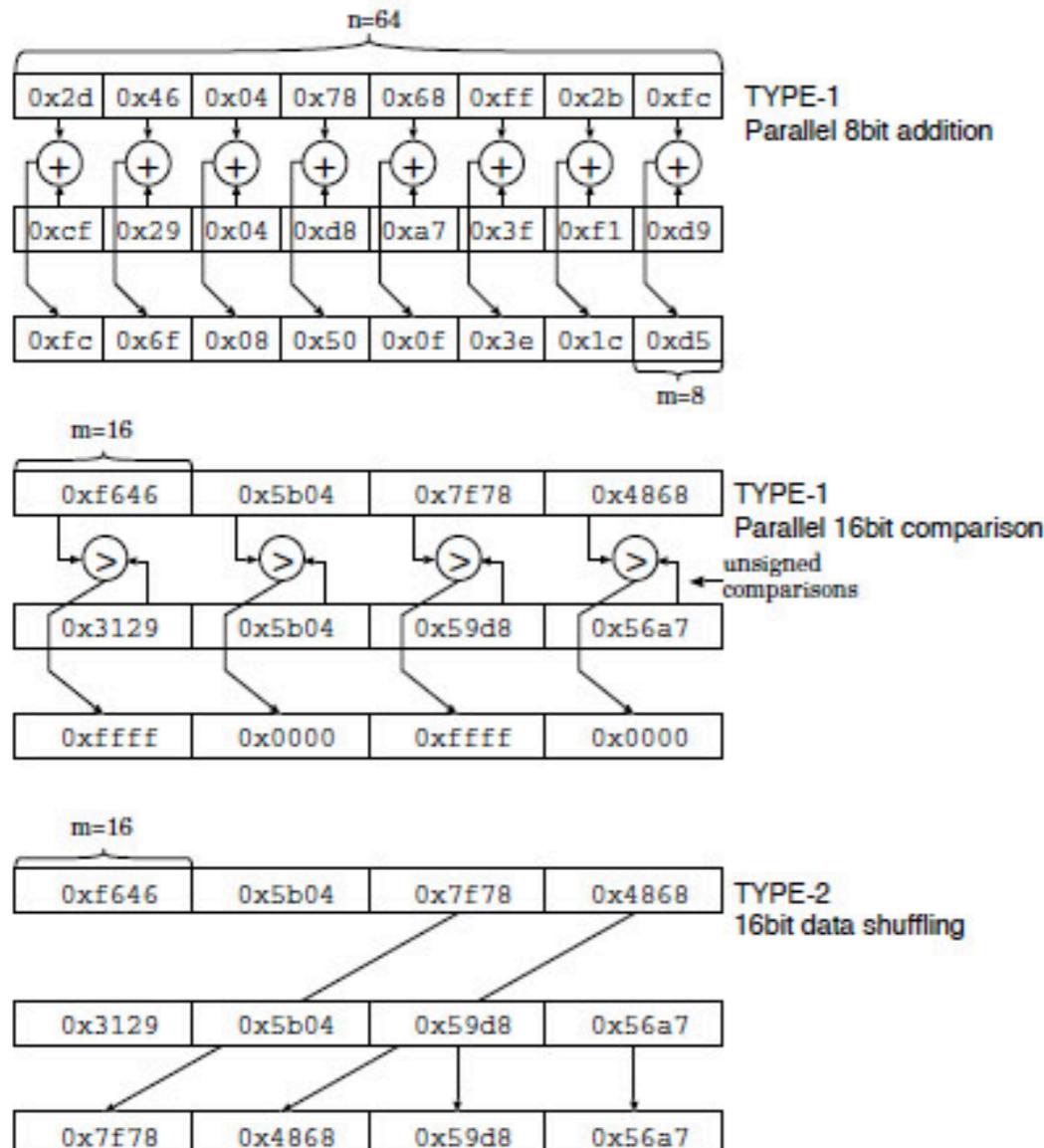
Given nearby cells from each column, we can calculate value for optimal global alignment *passing through those cells*

Optimal such value indicates where alignment crosses the center

Repeat recursively to solve the entire problem, including backtrace, in $O(mn)$ time and linear space

Hirschberg's algorithm See Gusfield 12.1

Data parallelism: SIMD operations



SIMD: Single Instruction, Multiple Data

A SIMD operation performs several operations at once on *vectors* of operands

One instruction on a modern CPU can add two vectors of 8 16-bit numbers quickly:

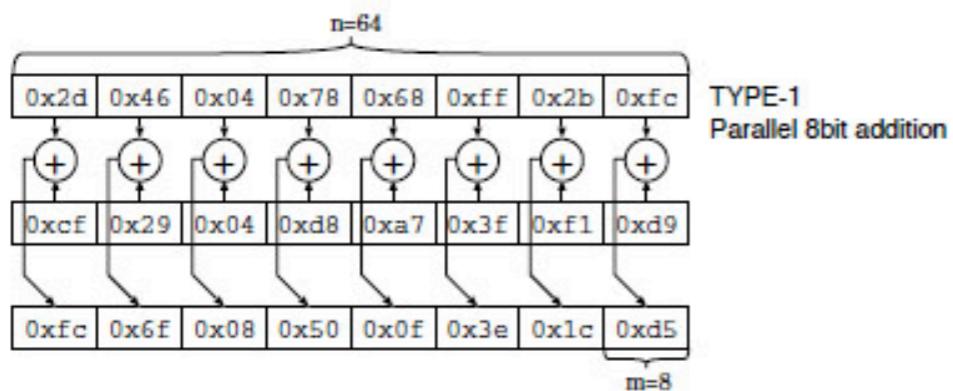
$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 134 & 45 & 14 & 73 & 86 & 782 & 67 & 36 \\ \hline \end{array} + \begin{array}{|c|c|c|c|c|c|c|c|} \hline 7 & 952 & 65 & 33 & 6 & 56 & 5 & 3 \\ \hline \end{array} = \begin{array}{|c|c|c|c|c|c|c|c|} \hline 141 & 997 & 79 & 106 & 92 & 838 & 72 & 39 \\ \hline \end{array}$$

<http://www.coins-project.org/international/COINSdoc.en/simd/simd.html>

JOHNS HOPKINS
WHITING SCHOOL
of ENGINEERING

Data parallelism

Can we take advantage of these operations when filling the matrix?



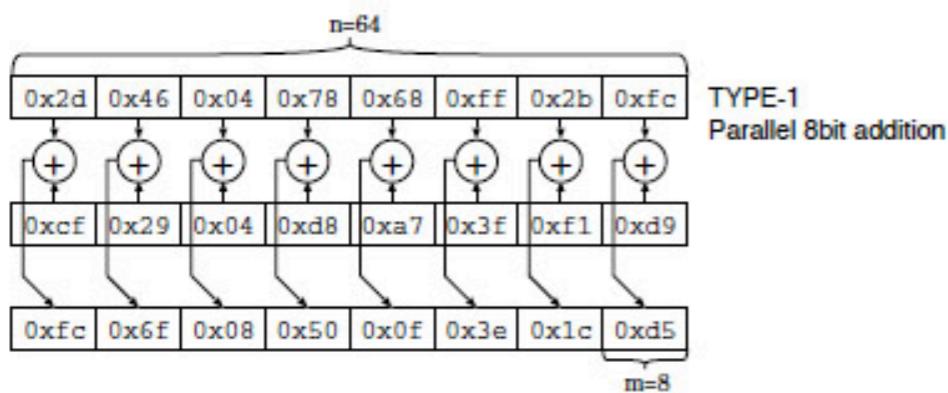
	-	T	A	T	G	T	C	A	T	G	C
-	0	8	16	24	32	40	48	56	64	72	80
T											
A											
C											
G											
T											
C											
A											
G											
C											

Data parallelism

Yes, dynamic programming has “data parallelism”

E.g. cells in **red** are calculated in the same way: different inputs but same operations. None depend on the others.

Things we do when filling in a cell: add, max, etc, can be packed into vectors and done for many cells in parallel:



	-	T	A	T	G	T	C	A	T	G	C
-	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32					
A	16	8	0	8	16						
C	24	16	8	2							
G	32	24	16								
T	40	32									
C	48										
A	56										
G	64										
C	72										

Data parallelism

Variations on this idea are quite practical and used a lot in practice

A Wozniak A. **Using video-oriented instructions to speed up sequence comparison.** *Comput Appl Biosci.* 1997 Apr;13(2):145-50.

B Rognes T, Seeberg E. **Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors.** *Bioinformatics.* 2000 Aug;16(8):699-706.

C Farrar M. **Striped Smith-Waterman speeds database searches six times over other SIMD implementations.** *Bioinformatics.* 2007 Jan 15;23(2):156-61.

D Rognes T. **Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.** *BMC Bioinformatics.* 2011 Jun 1;12:221.

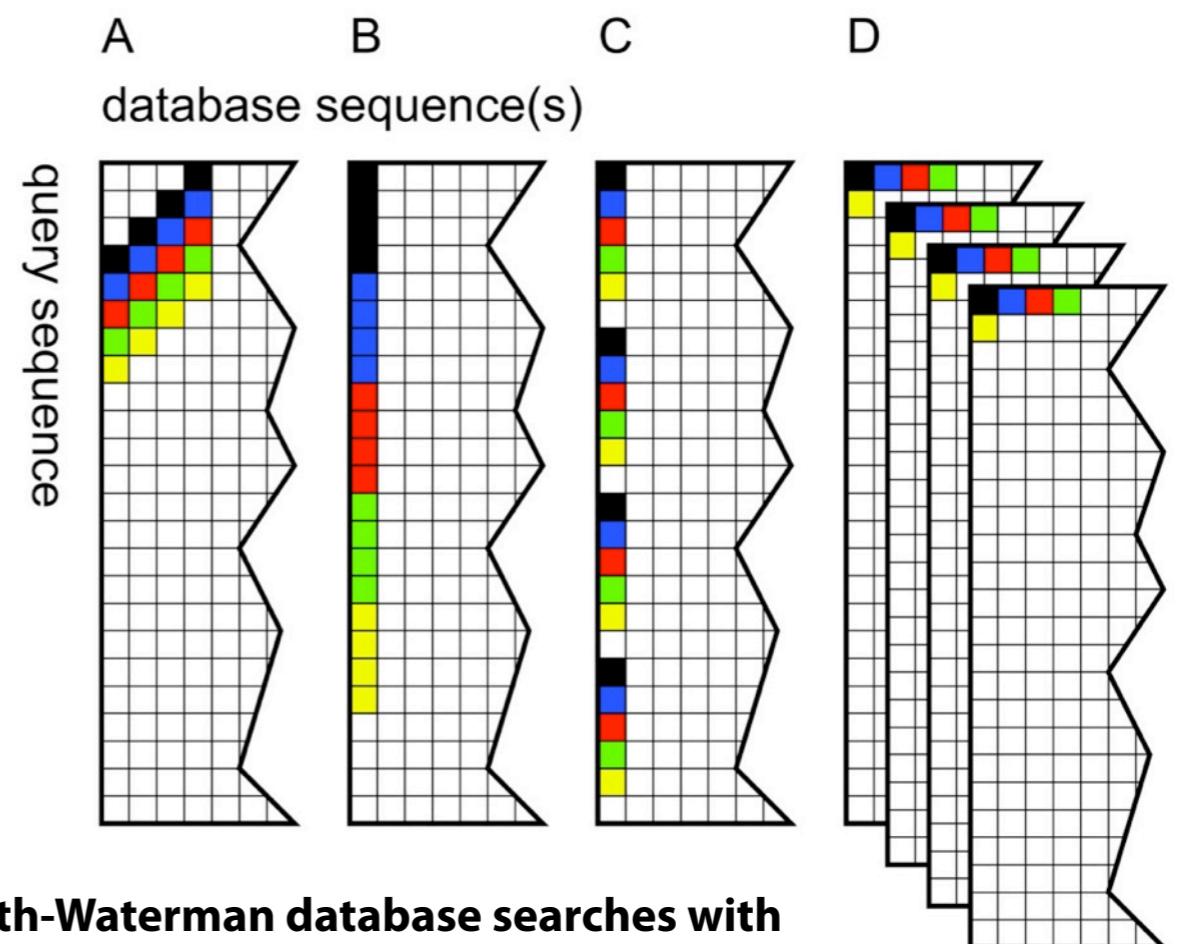


Figure from: Rognes T. **Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.** *BMC Bioinformatics.* 2011 Jun 1;12:221.

Dynamic programming summary

- Edit distance is harder to calculate than Hamming distance, but there is a $O(mn)$ time dynamic programming algorithm
- Global alignment generalizes edit distance to use a cost function
- Slight tweaks to global alignment turn it into an algorithm for:
 - Longest Common Subsequence
 - Finding approximate occurrences of P in T
- Local alignment also has a $O(mn)$ -time dynamic programming solution
- Further efficiencies are possible:
 - If no alignment is needed, global/local alignment can be made linear-space
 - Even if alignment is needed, global alignment can be made linear-space with Hirschberg
 - SIMD instructions can fill in chunks of cells at a time

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions