
Dynamic programming
in less time and space

Ben Langmead

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me brie!y how you’re
using them. For original Keynote "les, email me.

Department of Computer Science

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Space usage revisited

We said the "ll step requires O(mn) space

ϵ T A T G T C A T G C
ϵ 0 8 16 24 32 40 48 56 64 72 80
T 8 0 8 16 24 32 40 48 56 64 72
A 16 8 0 8 16 24 32 40 48 56 64
C 24 16 8 2 10 18 24 32 40 48 56
G 32 24 16 10 2 10 18 26 34 40 48
T 40 32 24 16 10 2 10 18 26 34 42
C 48 40 32 24 18 10 2 10 18 26 34
A 56 48 40 32 26 18 10 2 10 18 26
G 64 56 48 40 32 26 18 10 6 10 18
C 72 64 56 48 40 34 26 18 12 10 10

Can we do better?

Assume we’re only interested
in cost / score in lower right-
hand cell

ϵ T A T G T C A T G C
ϵ 0 8 16 24 32 40 48 56 64 72 80
T 8 0 8 16 24 32 40 48 56 64 72
A
C
G
T
C
A
G
C

Space usage revisited

Idea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

ϵ T A T G T C A T G C
ϵ 0 8 16 24 32 40 48 56 64 72 80
T 8 0 8 16 24 32 40 48 56 64 72
A ?
C
G
T
C
A
G
C

Discard this row...

...once we begin this row

Only keeping O(1) rows at a
time, space bound becomes
O(min(n, m)) -- linear space

Space usage revisited

ϵ T A T G T C A T G C
ϵ
T
A
C
G
T
C
A
G 64 56 48 40 32 26 18 10 6 10 18
C 72 64 56 48 40 34 26 18 12 10 10

We get desired value / score, by
looking in the lower right cell
(global alignment)

Idea: just store current and previous rows. Discard older rows as we go.
(Likewise for columns or antidiagonals.)

Space usage revisited

More savings: discard elements as soon as they’re no longer needed

ϵ T A T G T C A T G C
ϵ
T 24 32 40 48 56 64 72
A 16 8 0 8 16 24
C
G
T
C
A
G
C

Discard this element

Once we "ll this element

Space usage revisited

Can we get both the optimal score and the alignment in linear space?

For global alignment, we can...

Space usage revisited

Space usage revisited: subdividing matrix
Assume global alignment. Idea: Split matrix into left half, "lled as usual, and right
half, "lled “backwards.” In both halves, only store current, previous columns.

Find V’[i, j]s for
successively longer
suffixes of x and y

Find V[i, j]s for
successively longer
pre"xes of x and y

V[i, j]s V’[i, j]s

Space usage revisited: subdividing matrix

V[i, j]s V’[i, j]s

5 4
5 5
4 6
2 6
4 3
5 2
1 3
1 4
4 1
5 4
5 5
3 6
4 7
4 1
2 3
4 3
5 3
5 3

After !ll, we have the
center 2 columns

Given nearby cells from each
column, we can calculate value for
optimal global alignment passing
through those cells

Opimal such value indicates where
alignment crosses the center

Repeat recursively to solve the
entire problem, including backtrace,
in O(mn) time and linear space

Hirschberg’s algorithm See Gus!eld 12.1

Data parallelism: SIMD operations

http://www.coins-project.org/international/COINSdoc.en/simd/simd.html

A SIMD operation performs several
operations at once on vectors of
operands

One instruction on a modern CPU
can add two vectors of 8 16-bit
numbers quickly:

134 45 14 73 86 782 67 36

7 952 65 33 6 56 5 3

+

=
141 997 79 106 92 838 72 39

SIMD: Single Instruction, Multple Data

http://www.coins-project.org/international/COINSdoc.en/simd/simd.html
http://www.coins-project.org/international/COINSdoc.en/simd/simd.html

Data parallelism

Can we take advantage of these operations when "lling the matrix?

-­‐ T A T G T C A T G C
-­‐ 0 8 16 24 32 40 48 56 64 72 80
T 8
A 16
C 24
G 32
T 40
C 48
A 56
G 64
C 72

Data parallelism

Yes, dynamic programming has “data parallelism”

E.g. cells in red are calculated in the same way: different inputs but
same operations. None depend on the others.

-­‐ T A T G T C A T G C
-­‐ 0 8 16 24 32 40 48 56 64 72 80
T 8 0 8 16 24 32
A 16 8 0 8 16
C 24 16 8 2
G 32 24 16
T 40 32
C 48
A 56
G 64
C 72

Things we do when "lling in a
cell: add, max, etc, can be
packed into vectors and done
for many cells in parallel:

Wozniak A. Using video-oriented instructions to speed up sequence comparison. Comput Appl
Biosci. 1997 Apr;13(2):145-50.

Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence database searches using
parallel processing on common microprocessors. Bioinformatics. 2000 Aug;16(8):699-706.

Farrar M. Striped Smith-Waterman speeds database
searches six times over other SIMD
implementations. Bioinformatics. 2007 Jan 15;23(2):
156-61.

Rognes T. Faster Smith-Waterman database searches
with inter-sequence SIMD parallelisation. BMC
Bioinformatics. 2011 Jun 1;12:221.

A

B

C

D

Figure from: Rognes T. Faster Smith-Waterman database searches with
inter-sequence SIMD parallelisation. BMC Bioinformatics. 2011 Jun 1;12:221.

Data parallelism

Variations on this idea are quite practical and used a lot in practice

Dynamic programming summary

• Edit distance is harder to calculate than Hamming distance, but there is a O(mn) time
dynamic progamming algorithm

• Global alignment generalizes edit distange to use a cost function

• Slight tweaks to global alignment turn it into an algorithm for:

• Longest Common Subsequence

• Finding approximate occurrences of P in T

• Local alignment also has a O(mn)-time dynamic programming solution

• Further efficiencies are possible:

• If no alignment is needed, global/local alignment can be made linear-space

• Even if alignment is needed, global alignment can be made linear-space with Hirschberg

• SIMD instructions can !ll in chunks of cells at a time

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions

http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions
http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions

