You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you’re using them. For original Keynote files, email me.
Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

How is it useful for compression? How is it reversible? How is it an index?

Burrows-Wheeler Transform

```python
def rotations(t):
    """Return list of rotations of input string t """
    tt = t * 2
    return [ tt[i:i+len(t)] for i in xrange(0, len(t)) ]

def bwm(t):
    """Return lexicographically sorted list of t’s rotations ""
    return sorted(rotations(t))

def bwtViaBwm(t):
    """Given T, returns BWT(T) by way of the BWM ""
    return ''.join(map(lambda x: x[-1], bwm(t)))
```

```plaintext
>>> bwtViaBwm("Tomorrow_and_tomorrow_and_tomorrow$")
'w$wwdd__nnnoooaattTmmmrrrrrrrooo__ooo'

>>> bwtViaBwm("It_was_the_best_of_times_it_was_the_worst_of_times$")
's$esttssfftteww_hhmmbootttt_i_i__woeaaressIi_______'

>>> bwtViaBwm('in_the_jingle_jangle_morning_I'll_come_following_you$')
'u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'
```

Python example: http://nbviewer.ipython.org/6798379
Burrows-Wheeler Transform

Characters of the BWT are sorted by their right-context.

This lends additional structure to BWT(T), tending to make it more compressible.

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

$ a b a a b a$
$a s a b a a b$
$a a b a s a b a$
$a b a s a b a$
$a b a a b a s$
$b a s a b a a$
$b a a b a s a$

BWM(T)

$ 6 s$
$ 5 a s$
$ 2 a a b a s$
$ 3 a b a s$
$ 0 a b a a b a s$
$ 4 b a s$
$ 1 b a a b a s$

SA(T)

Sort order is the same whether rows are rotations or suffixes
Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct \(BWT(T) \):

\[
BWT[i] = \begin{cases}
T[SA[i] - 1] & \text{if } SA[i] > 0 \\
$ & \text{if } SA[i] = 0
\end{cases}
\]

“\(BWT = \text{characters just to the left of the suffixes in the suffix array} \)”

\[
\begin{array}{cccccc}
\$ & a & b & a & a & b \\
a & $ & a & b & a & a & b \\
a & a & b & a & $ & a & b \\
a & b & a & $ & a & b & a \\
a & b & a & a & b & a & $ \\
b & a & $ & a & b & a & a \\
b & a & a & b & a & $ & a \\
\end{array}
\]

BWM(T)

\[
\begin{array}{cccccc}
6 & $ \\
5 & a & $ \\
2 & a & a & b & a & $ \\
3 & a & b & a & $ \\
0 & a & b & a & a & b & a & $ \\
4 & b & a & $ \\
1 & b & a & a & b & a & $ \\
\end{array}
\]

SA(T)
Burrows-Wheeler Transform

```python
def suffixArray(s):
    """ Given T return suffix array SA(T). We use Python's sorted
    function here for simplicity, but we can do better. """
    satups = sorted((s[i:], i) for i in xrange(0, len(s)))
    # Extract and return just the offsets
    return map(lambda x: x[1], satups)

def bwtViaSa(t):
    """ Given T, returns BWT(T) by way of the suffix array. """
    bw = []
    for si in suffixArray(t):
        if si == 0:
            bw.append('$')
        else:
            bw.append(t[si-1])
    return ''.join(bw)  # return string-ized version of list bw
```

Python example: http://nbviewer.ipython.org/6798379
How to reverse the BWT?

BWM has a key property called the LF Mapping...
Burrows-Wheeler Transform: T-ranking

Give each character in T a rank, equal to # times the character occurred previously in T. Call this the T-ranking.

$$a_0 \ b_0 \ a_1 \ a_2 \ b_1 \ a_3 \ \$$$

Now let’s re-write the BWM including ranks...
Burrows-Wheeler Transform

BWM with T-ranking:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$</th>
<th>a₀</th>
<th>b₀</th>
<th>a₁</th>
<th>a₂</th>
<th>b₁</th>
<th>a₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₃</td>
<td>$</td>
<td>a₀</td>
<td>b₀</td>
<td>a₁</td>
<td>a₂</td>
<td>b₁</td>
<td>a₃</td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>a₂</td>
<td>b₁</td>
<td>a₃</td>
<td>$</td>
<td>a₀</td>
<td>b₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₂</td>
<td>b₁</td>
<td>a₃</td>
<td>$</td>
<td>a₀</td>
<td>b₀</td>
<td>a₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₀</td>
<td>b₀</td>
<td>a₁</td>
<td>a₂</td>
<td>b₁</td>
<td>a₃</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b₁</td>
<td>a₃</td>
<td>$</td>
<td>a₀</td>
<td>b₀</td>
<td>a₁</td>
<td>a₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b₀</td>
<td>a₁</td>
<td>a₂</td>
<td>b₁</td>
<td>a₃</td>
<td>$</td>
<td>a₀</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Look at first and last columns, called F and L

And look at just the as

as occur in the same order in F and L. As we look down columns, in both cases we see: $a₃, a₁, a₂, a₀$
Burrows-Wheeler Transform

BWM with T-ranking:

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ a_0 b_0 a_1 a_2 b_1 a_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ a_3 a_0 b_0 a_1 a_2 b_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ a_1 a_2 b_1 a_3 a_0 b_0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ a_2 b_1 a_3 a_0 b_0 a_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ a_0 b_0 a_1 a_2 b_1 a_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ b_1 a_3 a_0 b_0 a_1 a_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$ b_0 a_1 a_2 b_1 a_3 a_0$</td>
<td></td>
</tr>
</tbody>
</table>

Same with bs: b_1, b_0
Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

![Diagram of Burrows-Wheeler Transform](image)

- How is it useful for compression?
- How is it reversible?
- How is it an index?

Burrows-Wheeler Transform: LF Mapping

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ a_0 b_0 a_1 a_2 b_1 a_3</td>
<td>a_3 $ a_0 b_0 a_1 a_2 b_1</td>
</tr>
<tr>
<td></td>
<td>a_1 a_2 b_1 a_3 $ a_0 b_0</td>
<td>a_2 b_1 a_3 $ a_0 b_0 a_1</td>
</tr>
<tr>
<td></td>
<td>a_2 b_1 a_3 $ a_0 b_0 a_1</td>
<td>a_0 b_0 a_1 a_2 b_1 a_3 $</td>
</tr>
<tr>
<td></td>
<td>b_1 a_3 $ a_0 b_0 a_1 a_2</td>
<td>b_0 a_1 a_2 b_1 a_3 $ a_0</td>
</tr>
</tbody>
</table>

LF Mapping: The i^{th} occurrence of a character c in L and the i^{th} occurrence of c in F correspond to the same occurrence in T

However we rank occurrences of c, ranks appear in the same order in F and L
Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Why are these as in this order relative to each other? They’re sorted by right-context.

Why are these as in this order relative to each other? They’re sorted by right-context.

Occurrences of c in F are sorted by right-context. Same for L!

Whatever ranking we give to characters in T, rank orders in F and L will match.
Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

\[
\begin{array}{ccccccc}
F & & & & & & L \\
\$ & a_0 & b_0 & a_1 & a_2 & b_1 & a_3 \\
a_3 & \$ & a_0 & b_0 & a_1 & a_2 & b_1 \\
a_1 & a_2 & b_1 & a_3 & \$ & a_0 & b_0 \\
a_2 & b_1 & a_3 & \$ & a_0 & b_0 & a_1 \\
a_0 & b_0 & a_1 & a_2 & b_1 & a_3 & \$
\end{array}
\]

We’d like a different ranking so that for a given character, ranks are in ascending order as we look down the F / L columns...
Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

\[
\begin{array}{cccccc}
F & & & & & L \\
\$ & a_3 & b_1 & a_1 & a_2 & b_0 & a_0 \\
a_0 & a_3 & b_1 & a_1 & a_2 & b_0 & \\
a_1 & a_2 & b_0 & a_3 & $ & a_3 & b_1 \\
a_2 & b_0 & a_0 & $ & a_3 & b_1 & a_1 \\
a_3 & b_1 & a_1 & a_2 & b_0 & a_0 & $ \\
b_0 & a_0 & $ & a_3 & b_1 & a_1 & a_2 \\
b_1 & a_1 & a_2 & b_0 & a_0 & $ & a_3 \\
\end{array}
\]

Ascending rank

\[F\] now has very simple structure: a \(\$\), a block of \(a\)'s with ascending ranks, a block of \(b\)'s with ascending ranks
Burrows-Wheeler Transform

<table>
<thead>
<tr>
<th>F</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a₀</td>
</tr>
<tr>
<td>a₀</td>
<td>b₀</td>
</tr>
<tr>
<td>a₁</td>
<td>b₁</td>
</tr>
<tr>
<td>a₂</td>
<td>a₁</td>
</tr>
<tr>
<td>a₃</td>
<td>$</td>
</tr>
<tr>
<td>b₀</td>
<td>a₂</td>
</tr>
</tbody>
</table>

Answer: row 6

row 6 → b₁ a₃
Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gs and 700 Ts and $\$ < A < C < G < T$

Which BWM row (0-based) begins with G_{100}? (Ranks are B-ranks.)

Skip row starting with $\$ (1 row)
Skip rows starting with A (300 rows)
Skip rows starting with C (400 rows)
Skip first 100 rows starting with G (100 rows)

Answer: row $1 + 300 + 400 + 100 = \text{row 801}$
Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T and moving left

Start in first row. F must have $. L contains character just prior to $: a_0

a_0: LF Mapping says this is same occurrence of a as first a in F. Jump to row beginning with a_0. L contains character just prior to a_0: b_0.

Repeat for b_0, get a_2
Repeat for a_2, get a_1
Repeat for a_1, get b_1
Repeat for b_1, get a_3
Repeat for a_3, get $, done

Reverse of chars we visited = a_3 b_1 a_1 a_2 b_0 a_0 $ = T
Burrows-Wheeler Transform: reversing

Another way to visualize reversing BWT(T):

<table>
<thead>
<tr>
<th>F</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td>a_0</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>a_0</td>
<td>b_0</td>
<td>a_0</td>
<td>b_0</td>
<td>a_0</td>
<td>b_0</td>
<td>a_0</td>
<td>b_0</td>
<td>a_0</td>
<td>b_0</td>
<td>a_0</td>
<td>b_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>a_1</td>
<td>b_1</td>
<td>a_1</td>
<td>b_1</td>
<td>a_1</td>
<td>b_1</td>
<td>a_1</td>
<td>b_1</td>
<td>a_1</td>
<td>b_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td>a_2</td>
<td>a_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_3</td>
<td>$</td>
<td>a_3</td>
<td>$</td>
<td>a_3</td>
<td>$</td>
<td>a_3</td>
<td>$</td>
<td>a_3</td>
<td>$</td>
<td>a_3</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>a_2</td>
<td>b_0</td>
<td>a_2</td>
<td>b_0</td>
<td>a_2</td>
<td>b_0</td>
<td>a_2</td>
<td>b_0</td>
<td>a_2</td>
<td>b_0</td>
<td>a_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>a_3</td>
<td>b_1</td>
<td>a_3</td>
<td>b_1</td>
<td>a_3</td>
<td>b_1</td>
<td>a_3</td>
<td>b_1</td>
<td>a_3</td>
<td>b_1</td>
<td>a_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ \rightarrow a_0 \rightarrow a_0 \rightarrow b_0 \rightarrow a_2 \rightarrow a_1 \rightarrow a_1 \rightarrow b_1 \rightarrow a_3 \rightarrow a_3 \rightarrow $

$ T: a_3 b_1 a_1 a_2 b_0 a_0 $
Burrows-Wheeler Transform: reversing

def rankBwt(bw):
 ''' Given BWT string bw, return parallel list of B-ranks. Also returns\ntots: map from character to # times it appears. '''
tots = dict()
ranks = []
for c in bw:
 if c not in tots: tots[c] = 0
 ranks.append(tots[c])
tots[c] += 1
return ranks, tots

def firstCol(tots):
 ''' Return map from character to the range of rows prefixed by the character. '''
first = {}
totc = 0
for c, count in sorted(tots.iteritems()):
 first[c] = (totc, totc + count)
totc += count
return first

def reverseBwt(bw):
 ''' Make T from BWT(T) '''
ranks, tots = rankBwt(bw)
first = firstCol(tots)
rowi = 0 # start in first row
t = '$' # start with rightmost character
while bw[rowi] != '$':
 c = bw[rowi]
 t = c + t # prepend to answer
 # jump to row that starts with c of same rank
 rowi = first[c][0] + ranks[rowi]
return t

Python example: http://nbviewer.ipython.org/6860491

Calculate B-ranks and count occurrences of each char

Make concise representation of first BWM column

Do reversal
Burrows-Wheeler Transform: reversing

```python
def reverseBwt(bw):
    ''' Make T from BWT(T) '''
    ranks, tots = rankBwt(bw)
    first = firstCol(tots)
    rowi = 0 # start in first row
    t = '$' # start with rightmost character
    while bw[rowi] != '$':
        c = bw[rowi]
        t = c + t # prepend to answer
        # jump to row that starts with c of same rank
        rowi = first[c][0] + ranks[rowi]
    return t
```

ranks list is \(m \) integers long! We’ll fix later.
Burrows-Wheeler Transform

We’ve seen how BWT is useful for compression:
 Sorts characters by right-context, making a more compressible string

And how it’s reversible:
 Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?
FM Index

FM Index: an index combining the BWT with a few small auxiliary data structures

“FM” supposedly stands for “Full-text Minute-space.” (But inventors are named Ferragina and Manzini)

Core of index consists of F and L from BWM:

F can be represented very simply
(1 integer per alphabet character)

And L is compressible

Potentially very space-economical!

FM Index: querying

Though BWM is related to suffix array, we can’t query it the same way.

We don’t have these columns; binary search isn’t possible.
FM Index: querying

Look for range of rows of BWM(T) with P as prefix

Do this for P's shortest suffix, then extend to successively longer suffixes until range becomes empty or we’ve exhausted P

\[P = \text{aba} \]

Easy to find all the rows beginning with a, thanks to F’s simple structure
FM Index: querying

We have rows beginning with a, now we seek rows beginning with \textbf{ba}

\[P = \textbf{aba} \]

\begin{align*}
F & \quad L \\
\$ & a b a a b a_0 \\
a_0 & a b a a b b_0 \\
a_1 & a b a a \$ a b_1 \\
a_2 & b a \$ a b a_1 \\
a_3 & b a a b a \$ \\
b_0 & a \$ a b a a_2 \\
b_1 & a a b a \$ a_3 \\
\end{align*}

Look at those rows in \(L \).
\(b_0, b_1 \) are bs occurring just to left.

Use LF Mapping. Let new range delimit those bs

\begin{align*}
F & \quad L \\
\$ & a b a a b a_0 \\
a_0 & a b a a b b_0 \\
a_1 & a b a a \$ a b_1 \\
a_2 & b a \$ a b a_1 \\
a_3 & b a a b a \$ \\
b_0 & a \$ a b a a_2 \\
b_1 & a a b a \$ a_3 \\
\end{align*}

Now we have the rows with prefix \textbf{ba}
FM Index: querying

We have rows beginning with \textbf{ba}, now we seek rows beginning with \textbf{aba}

\[P = \textbf{aba} \]

\begin{align*}
F & \quad L \\
\$ & a b a a b a_0 \\
a_0 & a b a a b a_0 \\
a_1 & a b a a b_1 \\
a_2 & b a a b a_1 \\
a_3 & b a a b a_2 \\
b_0 & a a b a_2 \\
b_1 & a a b a_3 \\
\end{align*}

\begin{align*}
F & \quad L \\
\$ & a b a a b a_0 \\
a_0 & a b a a b_0 \\
a_1 & a b a a b_1 \\
a_2 & b a a b_1 \\
a_3 & b a a b_2 \\
b_0 & a a b_2 \\
b_1 & a a b_3 \\
\end{align*}

Use LF Mapping

\[a_2, a_3 \text{ occur just to left.} \]

Now we have the rows with prefix \textbf{aba}
Now we have the same range, [3, 5), we would have got from querying suffix array.

Unlike suffix array, we don’t immediately know where the matches are in T...
FM Index: querying

When \(P \) does not occur in \(T \), we will eventually fail to find the next character in \(L \):

\[
P = bba
\]

Rows with \(ba \) prefix:

No \(bs \)!
FM Index: querying

If we scan characters in the last column, that can be very slow, $O(m)$

$P = \text{aba}$

Scan, looking for bs
FM Index: lingering issues

(1) Scanning for preceding character is slow

(2) Storing ranks takes too much space

(3) Need way to find where matches occur in T:

```python
def reverseBwt(bw):
    """Make $T$ from $\text{BWT}(T)$""
    ranks, tots = rankBwt(bw)
    first = firstCol(tots)
    rowi = 0
    t = "$"
    while bw[rowi] != '$':
        c = bw[rowi]
        t = c + t
        rowi = first[c][0] + ranks[rowi]
    return t
```

$O(m)$ scan
FM Index: fast rank calculations

Is there an $O(1)$ way to determine which bs precede the as in our range?

Idea: pre-calculate $\# a$s, bs in L up to every row:

We infer b_0 and b_1 appear in L in this range

$O(1)$ time, but requires $m \times |\Sigma| \text{ integers}$
Another idea: pre-calculate \# of \texttt{a}s, \texttt{b}s in \(L\) up to some rows, e.g. every 5th row. Call pre-calculated rows \textit{checkpoints}.

To resolve a lookup for character \(c\) in non-checkpoint row, scan along \(L\) until we get to nearest checkpoint. Use tally at the checkpoint, \textit{adjusted for \# of c}s we saw along the way.
FM Index: fast rank calculations

Assuming checkpoints are spaced $O(1)$ distance apart, lookups are $O(1)$

What's my rank?

482 + 2 - 1 = 483

What's my rank?

439 - 2 - 1 = 436
FM Index: a few problems

Solved! At the expense of adding checkpoints \((O(m)\) integers) to index.

(1) Ranking takes too much space

(2) With checkpoints, we greatly reduce # integers needed for ranks

But it’s still \(O(m)\) space - there’s literature on how to improve this space bound
FM Index: a few problems

Not yet solved: (3) Need a way to find where these occurrences are in T:

If suffix array were part of index, we could simply look up the offsets

$$
\begin{array}{c|c}
F & L \\
$ & a b a a b a \\
a & a b a a b \\
a a b a $ & a b \\
a b a $ & a b a \\
\text{\textbf{a b a $}} & a b a \\
\text{\textbf{a b a a b a $}} & b a b a \\
\text{\textbf{b a $}} & a b b a \\
\text{\textbf{b a a b a $}} & b a b a \\
\end{array}
$$

<table>
<thead>
<tr>
<th>SA</th>
<th>6</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>a $</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a b a $</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a b a $</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>a b a a b a $</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b a $</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b a a b a $</td>
<td></td>
</tr>
</tbody>
</table>

Offsets: 0, 3

But SA requires m integers
FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>$</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Lookup for row 4 succeeds - we kept that entry of SA
Lookup for row 3 fails - we discarded that entry of SA
FM Index: resolving offsets

But LF Mapping tells us that the \textbf{a} at the end of row 3 corresponds to...
...the \textbf{a} at the beginning of row 2

\begin{array}{ccc}
F & L & SA \\
\$ a b a a b & & 6 \\
a $ a b a a b & & 2 \\
a a b a $ a b & & 0 \\
a b a $ a b a & & 4 \\
b a a b a & & \\
b a a b a $ & & \\
\end{array}

And row 2 has a suffix array value = 2

So row 3 has suffix array value = 3 = 2 (row 2’s SA val) + 1 (# steps to row 2)

If saved SA values are \(O(1)\) positions apart in \(T\), resolving offset is \(O(1)\) time
FM Index: problems solved

Solved! At the expense of adding some SA values \((O(m)\) integers) to index

Call this the “SA sample”

(3) Need a way to find where these occurrences are in \(T\):

\[
\begin{array}{ccccccc}
$ & a & b & a & a & b & a_0 \\
a_0 & $ & a & b & a & a & b_0 \\
a_1 & a & b & a & $ & a & b_1 \\
a_2 & b & a & $ & a & b & a_1 \\
a_3 & b & a & a & b & a & $ \\
b_0 & a & $ & a & b & a & a_2 \\
b_1 & a & a & b & a & $ & a_3 \\
\end{array}
\]

With SA sample we can do this in \(O(1)\) time per occurrence
FM Index: small memory footprint

Components of the FM Index:

First column (F): $\sim |\Sigma|$ integers
Last column (L): m characters
SA sample: $m \cdot a$ integers, where a is fraction of rows kept
Checkpoints: $m \times |\Sigma| \cdot b$ integers, where b is fraction of rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), $T =$ human genome, $a = 1/32$, $b = 1/128$

First column (F): 16 bytes
Last column (L): 2 bits \times 3 billion chars $= 750$ MB
SA sample: 3 billion chars \times 4 bytes/char / 32 ≈ 400 MB
Checkpoints: 3 billion \times 4 bytes/char / 128 ≈ 100 MB

Total < 1.5 GB