Wheeler graphs, part 4: Consecutivity

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Do Wheeler Graphs have the kind of **consecutivity** that enables FM-Index-like matching?

A graph is **path coherent** if nodes can be ordered such that:

For any consecutive range [i, j] of nodes and character c, the nodes reached by following edges matching c also form a consecutive range

A graph is **path coherent** if nodes can be ordered such that:

For any consecutive range [i, j] of nodes and character c, the nodes reached by following edges matching c also form a consecutive range

A graph is **path coherent** if nodes can be ordered such that:

For any consecutive range [i, j] of nodes and character c, the nodes reached by following edges matching c also form a consecutive range

Consider one step:

Initial set of nodes are in consecutive range [*i*, *j*]

After advancing on character c, [i', j'] is the smallest range containing **next** set of nodes

Consider one step:

Initial set of nodes are in consecutive range [*i*, *j*]

After advancing on character c, [i', j'] is the smallest range containing **next** set of nodes

Do nodes in [i', j'] consist *only* of *the c*-successors of nodes in [i, j]?

Consider node x, where i' < x < j' with incoming edge labeled c'. Suppose $c' \neq c$.

Recall: $a \prec a' \Longrightarrow v \lt v'$ Since $x \nleq i'$, we have $c' \measuredangle c$ Since $j' \measuredangle x$, we have $c \measuredangle c'$

We have $c' \ge c, c \ge c'$, and $c' \ne c$, giving a contradiction

Could node $x \notin [i, j]$ be a c-predecessor of a node y, i' < y < j'?

No. Proof idea: draw contradiction, similar to previous argument, but using rule 3:

$$(a = a') \land (u < u') \implies v \le v'$$

For consecutive range [i, j] of nodes & string α , the nodes reached by matching α also form a consecutive range

Proof idea: extend previous arguments to string α inductively

Wheeler graphs: review

Definition of Wheeler graph 0 in-degree nodes come before others (1)

For all pairs $\begin{bmatrix} a < a' \implies v < v' \\ (2) \end{bmatrix}$

of edges
$$\left| (a = a') \land (u < u') \Longrightarrow v \le v' \right| (3)$$

"Ordered destinations & no crossing" interpretation

Proved consecutivity property and, by extension, path coherence

Wheeler graphs: next

How do we represent & query a Wheeler graph?

Can we query with FM-Index-like ease & efficiency?