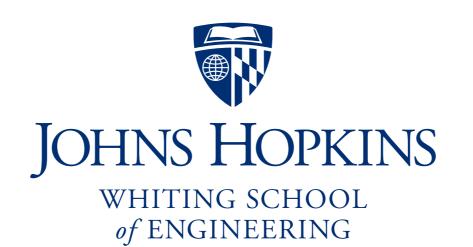
## Wheeler graphs, part 3: Definition

**Ben Langmead** 



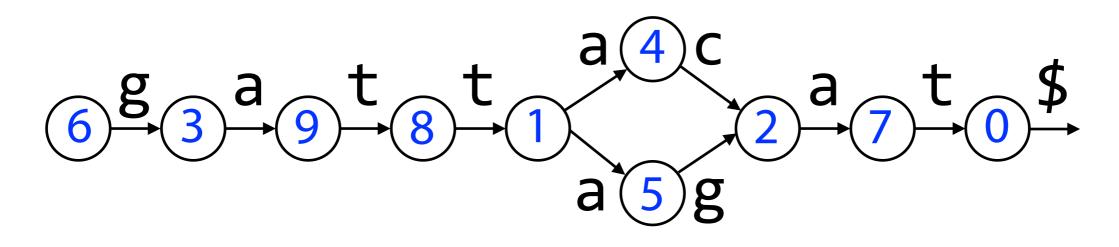
**Department of Computer Science** 



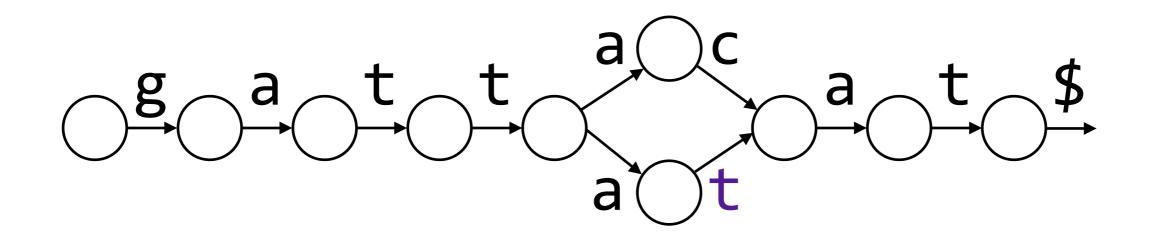
Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

## **BWT:** matching

For some graphs, total order exists

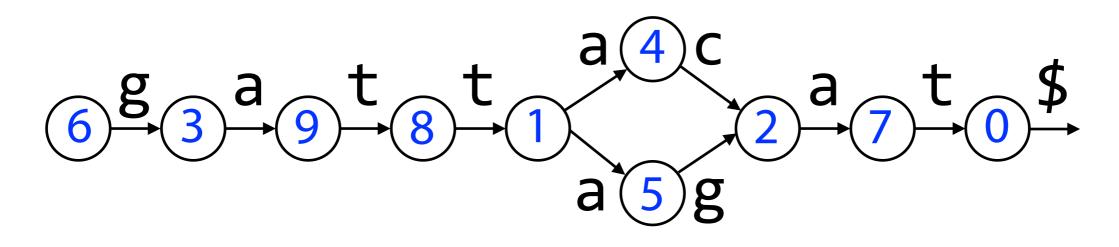


For others, not (but we can "fix" them sometimes)

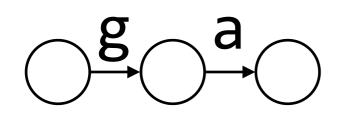


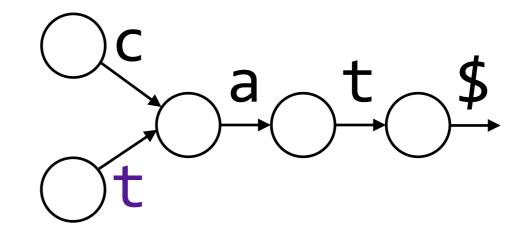
## **BWT:** matching

For some graphs, total order exists



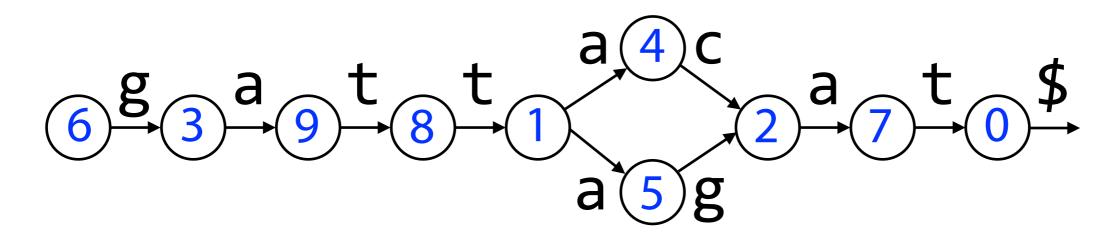
For others, not (but we can "fix" them sometimes)



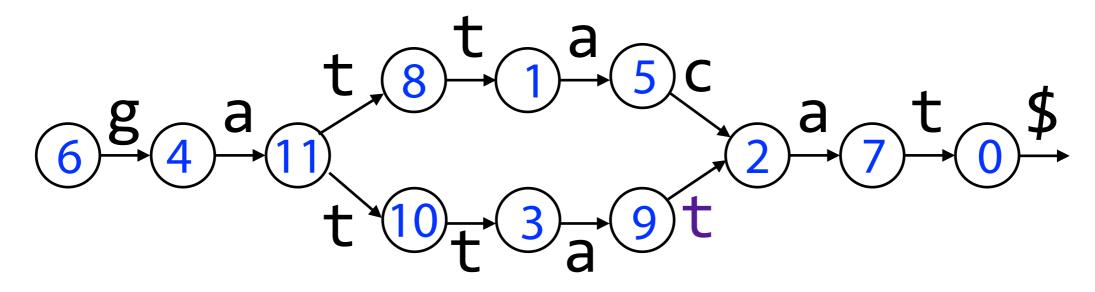


## **BWT:** matching

For some graphs, total order exists



For others, not (but we can "fix" them sometimes)



## Which graphs does it work for?

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

(2)  $a < a' \Longrightarrow v < v'$ 

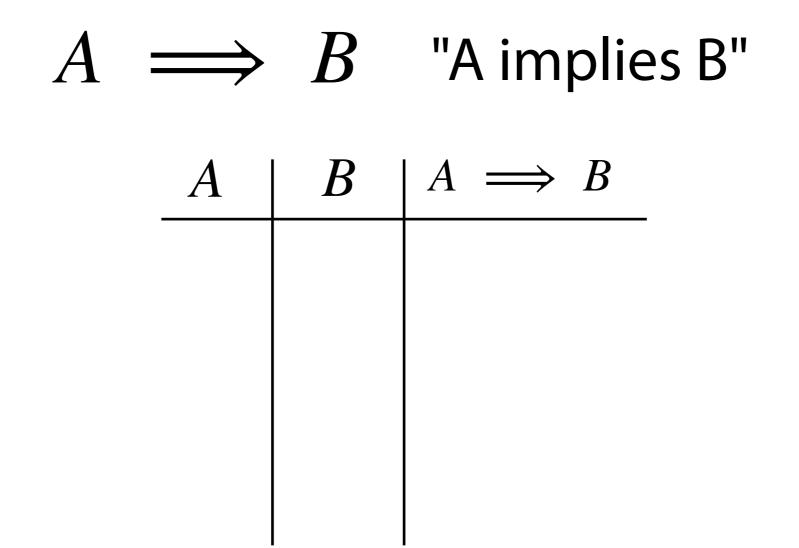
An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

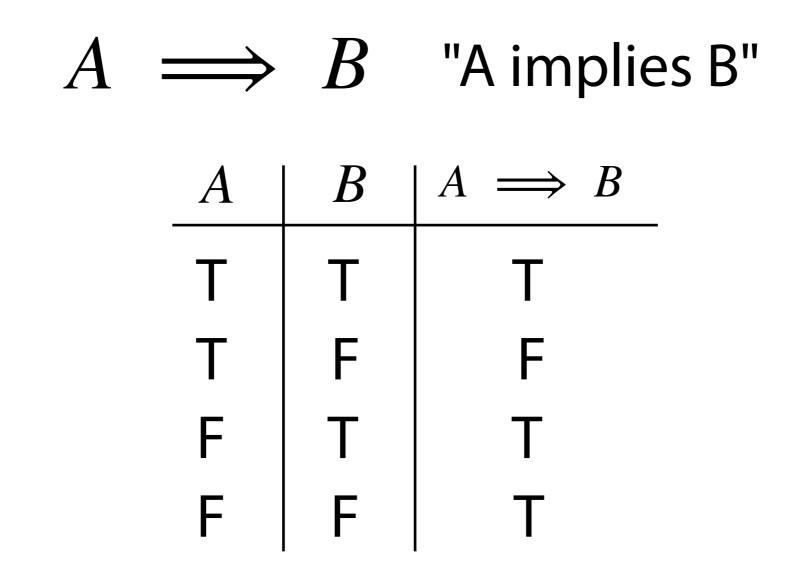
(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

(2)  $a \prec a' \Longrightarrow v \prec v',$ (3)  $(a = a') \land (u \prec u') \Longrightarrow v \leq v'.$ 

## $A \implies B$ "A implies B"

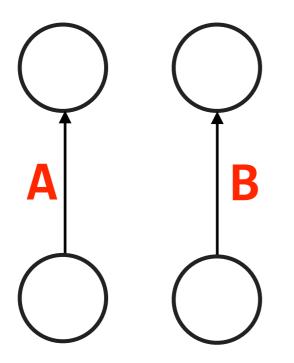




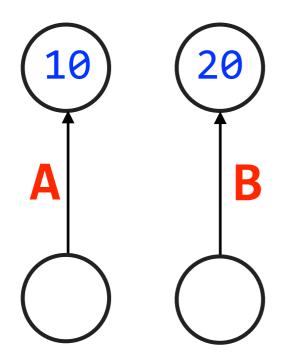
When left-hand side (LHS) is true, RHS must be true When LHS is false, RHS can be whatever it wants

## (2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \prec v'$

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled  $a, a': a \prec a' \Longrightarrow v \prec v'$ 

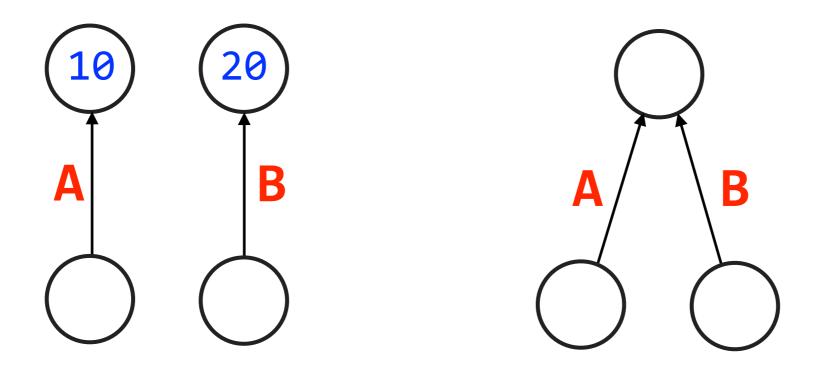


(2) For all pairs of edges e = (u, v), e' = (u', v')labeled  $a, a': a \prec a' \Longrightarrow v \lt v'$ 



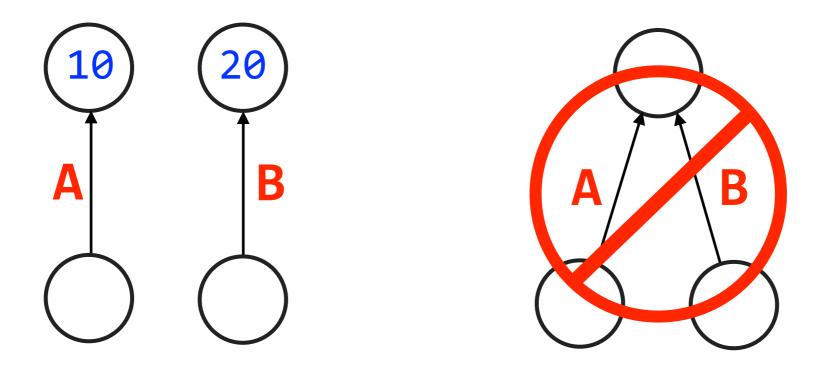
If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled  $a, a': a \prec a' \Longrightarrow v \prec v'$ 



If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled  $a, a': a \prec a' \Longrightarrow v \prec v'$ 

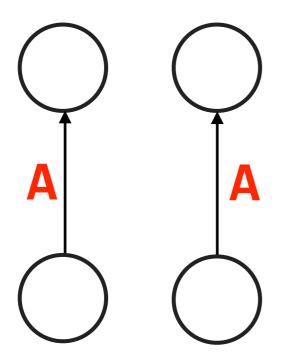


If labels differ, destination of smaller-label edge comes before destination of larger-label edge

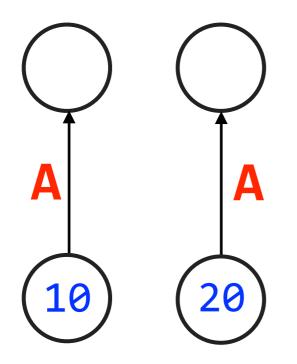
Corollary: cannot have 2 incoming edges with different labels

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .

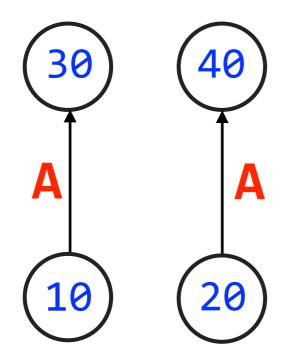
(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .



(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .

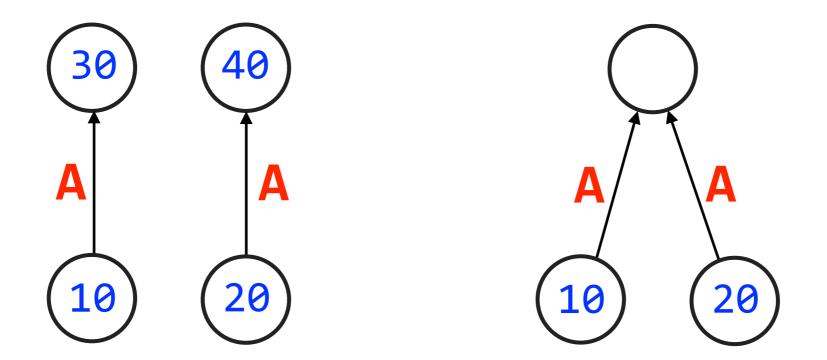


(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .



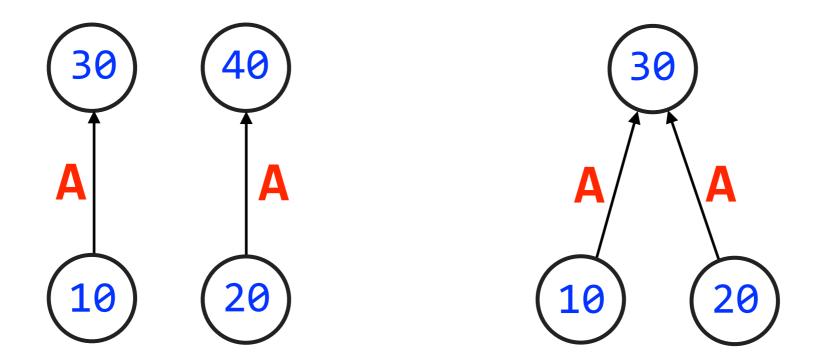
If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .



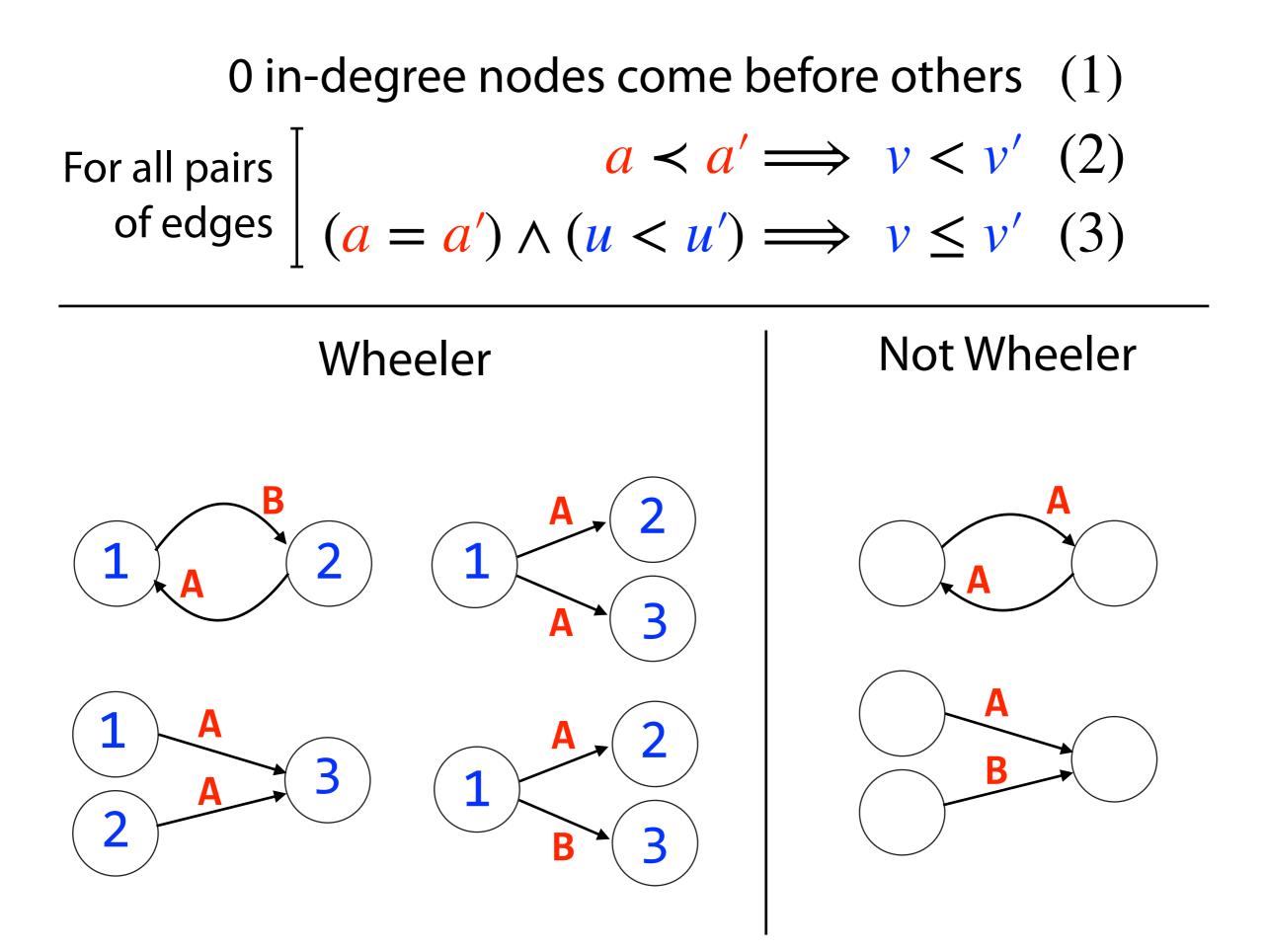
If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a':  $(a = a') \land (u < u') \Longrightarrow v \le v'$ .



If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

## 0 in-degree nodes come before others (1) For all pairs $a \prec a' \Longrightarrow v < v'$ (2) of edges $(a = a') \land (u < u') \Longrightarrow v \leq v'$ (3)



Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

#### For given ordering, not hard

Properties are easily checked by looping over nodes, edges, pairs of edges

Exists an order over nodes s.t.:

0 in-degree nodes come before others (1)

- $a \prec a' \Longrightarrow v < v'$  (2)
- $(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$

Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

#### From scratch, it's NP complete

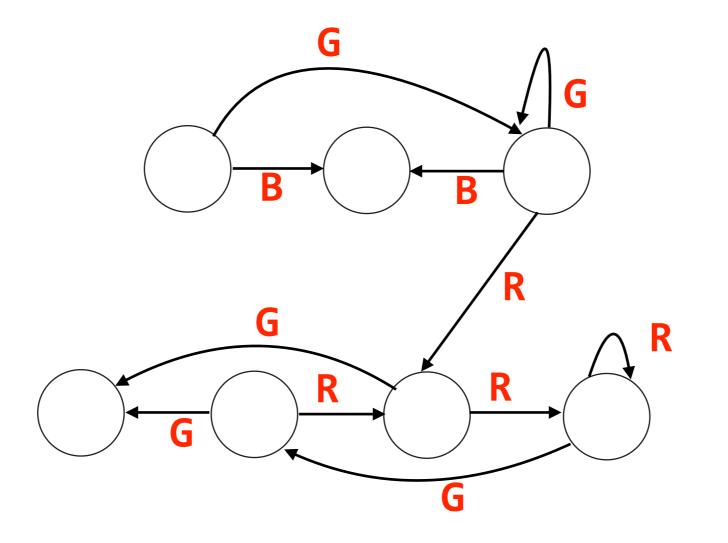
Related problems also hard to solve / approximate

D Gibney & SV Thankachan, "On the Hardness and Inapproximability of Recognizing Wheeler Graphs." 27th Annual European Symposium on Algorithms (ESA 2019), pp51:1--51:16 Exists an order over nodes s.t.: 0 in-degree nodes come before others (1)  $a \prec a' \Longrightarrow v < v'$  (2)  $(a = a') \land (u < u') \Longrightarrow v \le v'$  (3)

## Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$  (2)

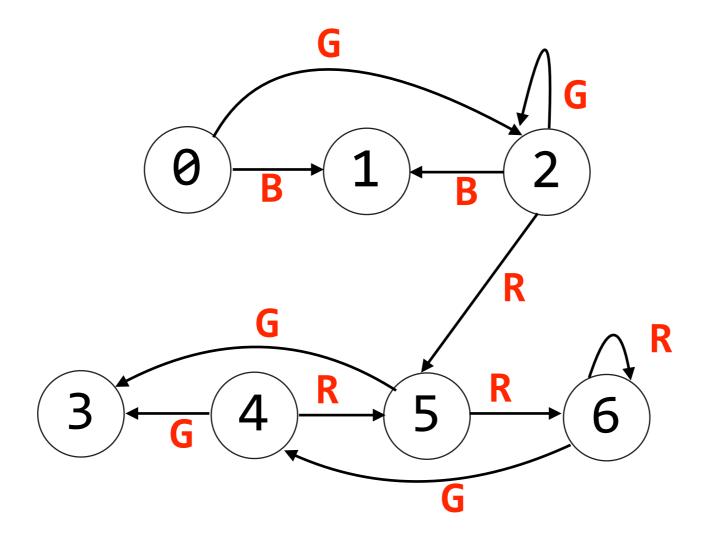
Is this a wheeler graph?  $(a = a') \land (u < u') \implies v \le v'$  (3)



## Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$  (2)

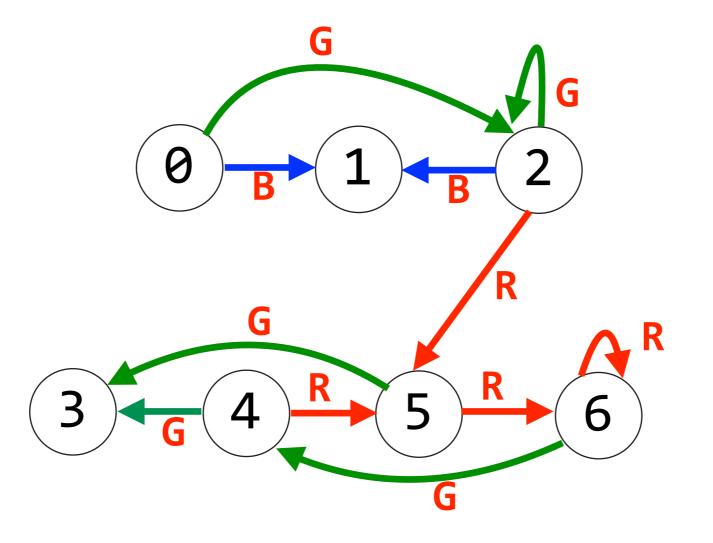
Is this a wheeler graph?  $(a = a') \land (u < u') \implies v \le v'$  (3)



## Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$  (2)

Is this a wheeler graph?  $(a = a') \land (u < u') \Longrightarrow v \le v'$  (3)



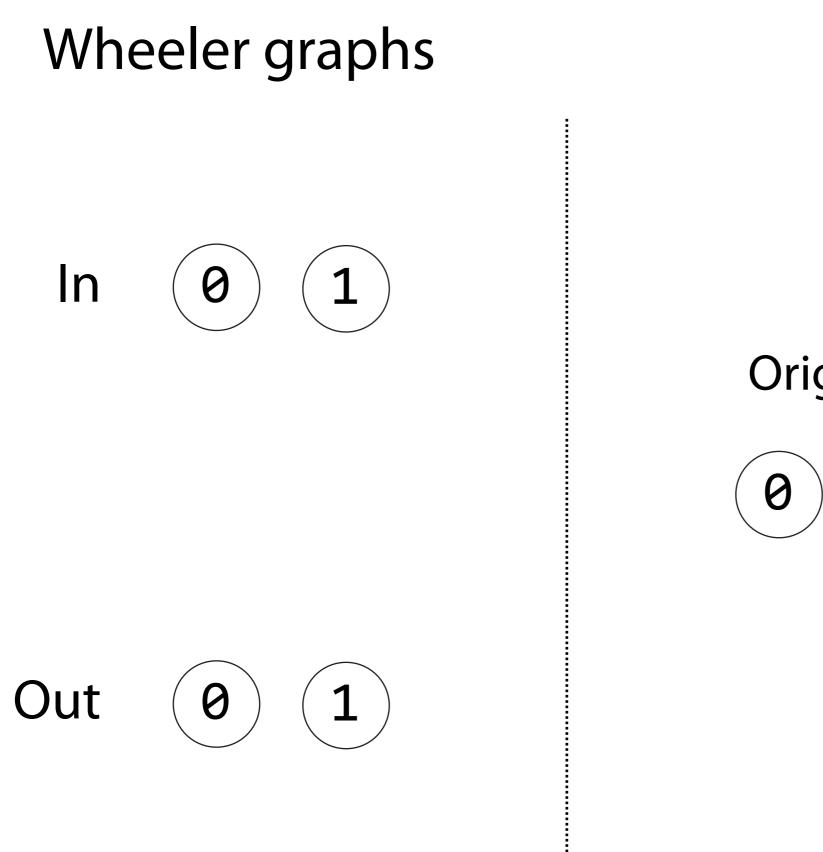
# (0) (1) (2) (3) (4) (5) (6)

# (0) (1) (2) (3) (4) (5) (6)

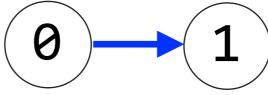
# (0) (1) (2) (3) (4) (5) (6)

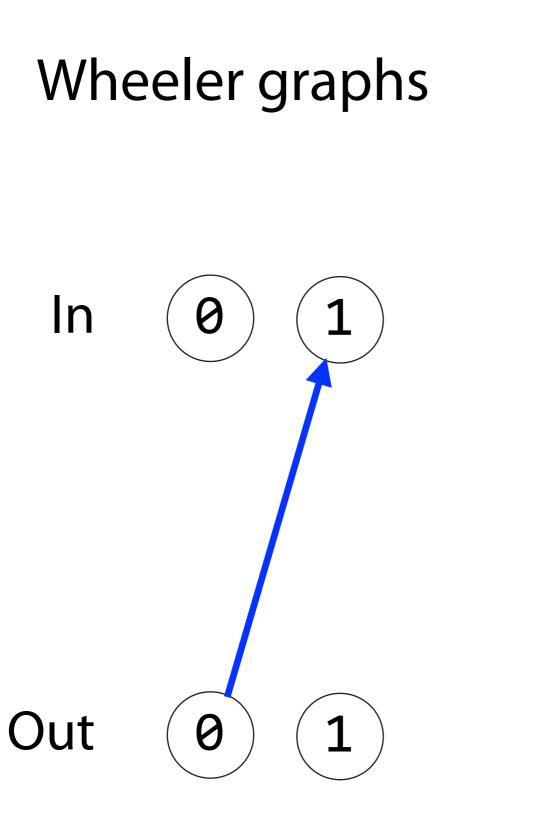
# $\ln (0) (1) (2) (3) (4) (5) (6)$

# Out (0) (1) (2) (3) (4) (5) (6)

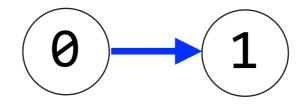


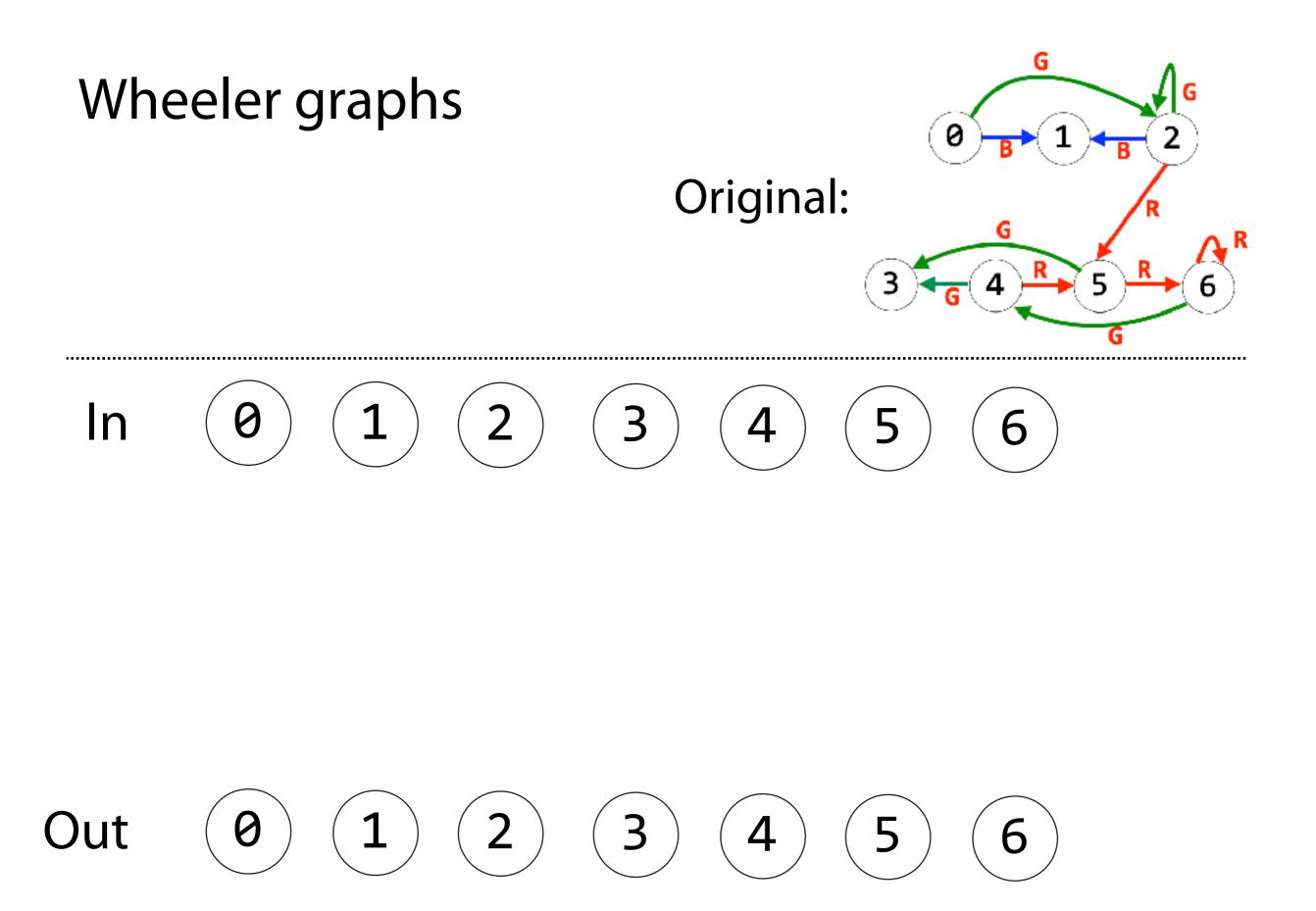
#### Original:

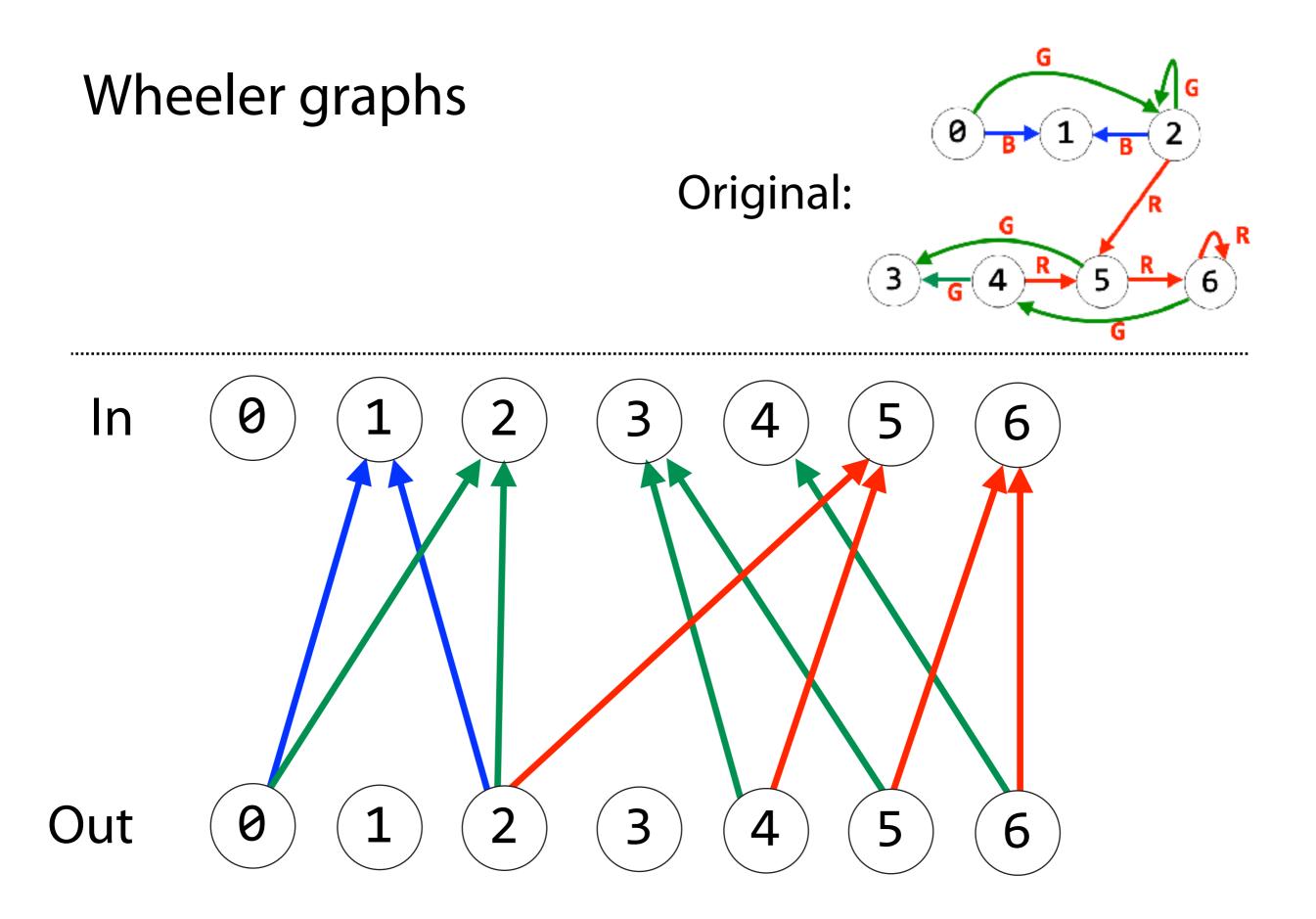




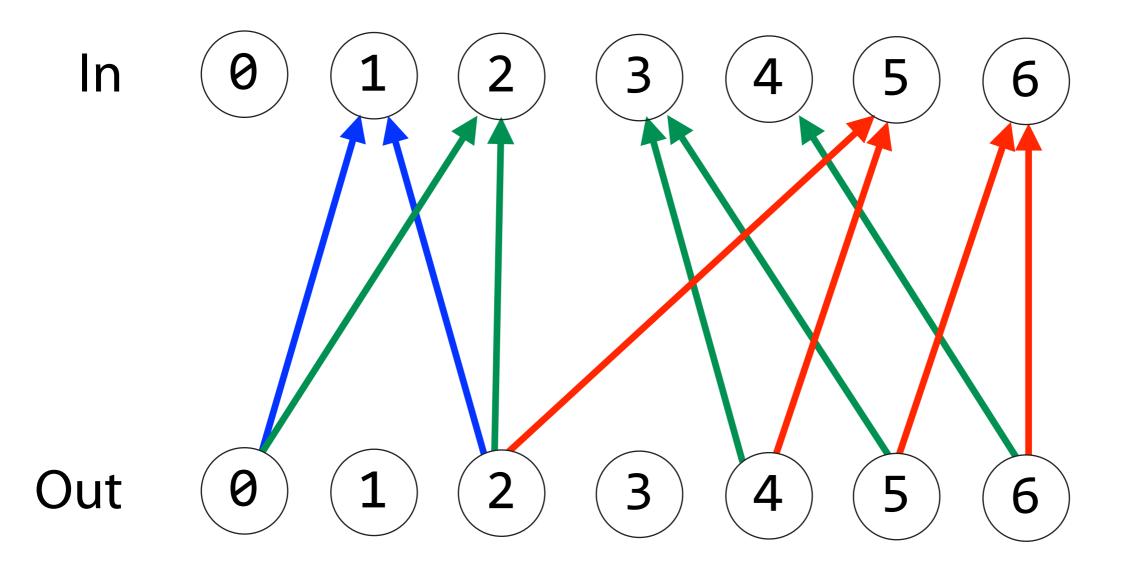
#### Original:





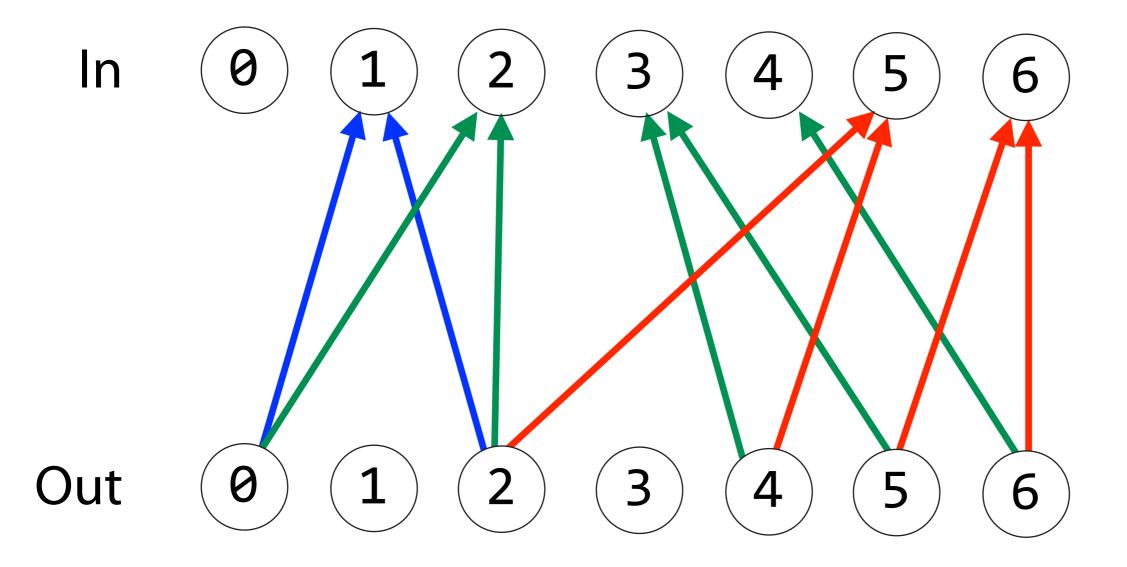


 $a \prec a' \Longrightarrow v < v'$ 



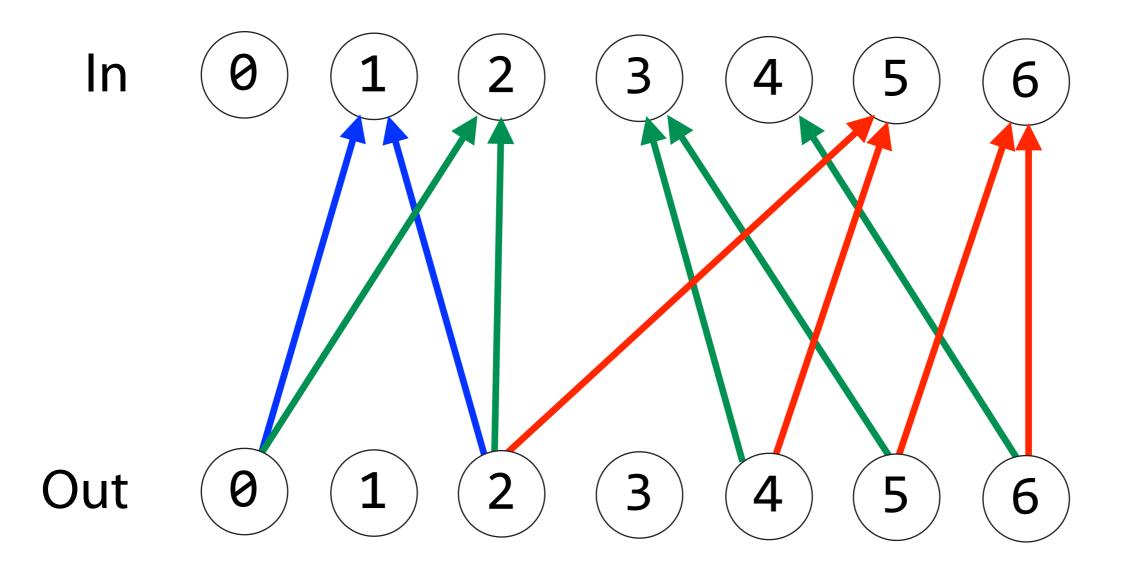
$$a \prec a' \Longrightarrow v < v'$$

# Blue destinations before green destinations before red





 $(a = a') \land (u < u') \Longrightarrow v \le v'$ 

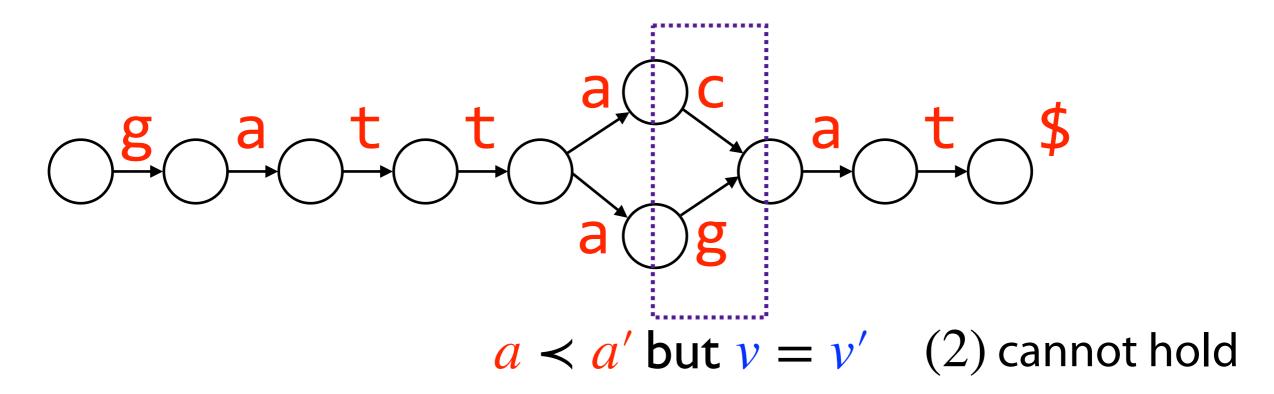


 $(a = a') \land (u < u') \Longrightarrow v \le v'$ 

No same-color edges cross each other

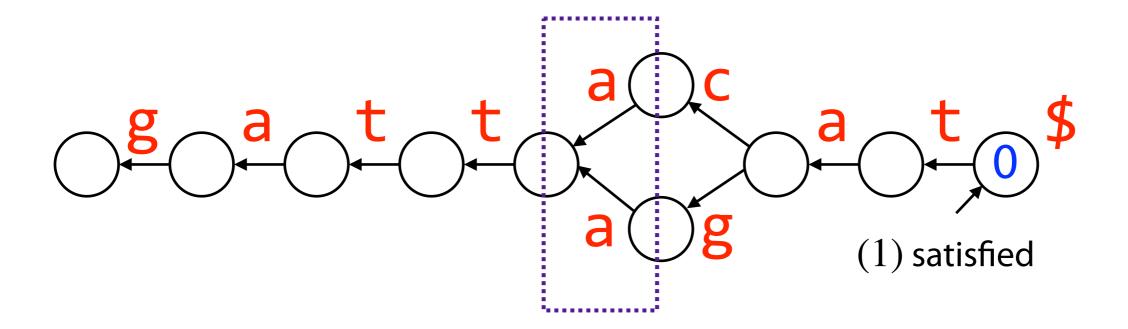
0 in-degree nodes come before others (1) For all pairs  $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$ 

Is this a Wheeler Graph? No



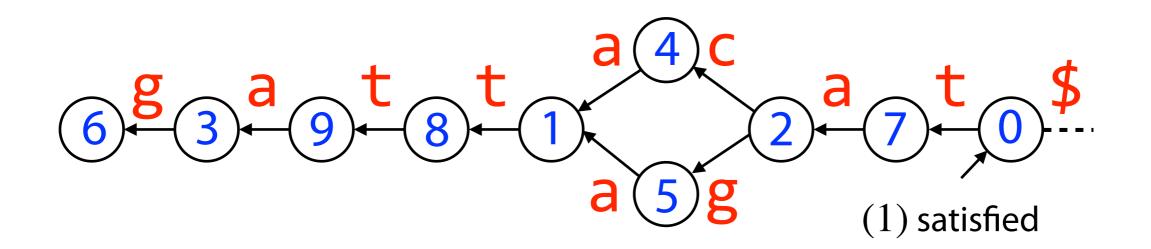
0 in-degree nodes come before others (1) For all pairs  $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$ 

What if we flip edges to follow the direction of matching?

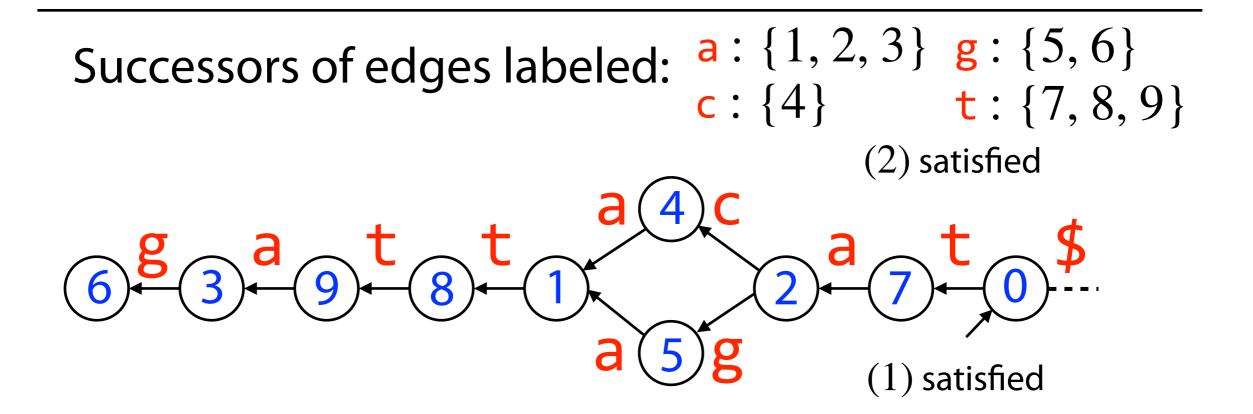


0 in-degree nodes come before others (1) For all pairs  $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$ 

Successors of edges labeled:



0 in-degree nodes come before others (1) For all pairs  $a \prec a' \Longrightarrow v < v'$  (2) of edges  $(a = a') \land (u < u') \Longrightarrow v \leq v'$  (3)



<u>Exercise</u>: prove (3) is satisfied for all pairs of edges