Wheeler graphs, part 3: Definition

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

Which graphs does it work for?

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

$$(2) a < a' \Longrightarrow v < v'$$

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e=(u,v), e'=(u',v')labeled a,a' respectively, we have:

$$(2) a < a' \Longrightarrow v < v',$$

(3)
$$(a = a') \land (u < u') \Longrightarrow v \leq v'$$
.

 $A \Longrightarrow B$ "A implies B"

$$A \implies B$$
 "A implies B"
$$\begin{array}{c|cccc} A & \Longrightarrow & B \\ \hline T & T & T \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & T \end{array}$$

When left-hand side (LHS) is true, RHS must be true When LHS is false, RHS can be whatever it wants

(2) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $a < a' \Longrightarrow v < v'$

(2) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $a < a' \Longrightarrow v < v'$

(2) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $a < a' \Longrightarrow v < v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $a < a' \Longrightarrow v < v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $a < a' \Longrightarrow v < v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

Corollary: cannot have 2 incoming edges with different labels

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v') labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

0 in-degree nodes come before others (1)

For all pairs
$$a \prec a' \Longrightarrow v \prec v'$$
 (2) of edges $a = a' \land u \prec u' \Rightarrow v \leq v'$ (3)

0 in-degree nodes come before others (1)

For all pairs
$$a \prec a' \Longrightarrow v \prec v'$$
 (2) of edges $a = a' \land u \prec u' \Rightarrow v \leq v'$ (3)

Wheeler

Not Wheeler

Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

For given ordering, not hard

Properties are easily checked by looping over nodes, edges, pairs of edges

Exists an order over nodes s.t.:

0 in-degree nodes come before others (1)

$$a < a' \Longrightarrow v < v'$$
 (2)

$$(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$$

Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

From scratch, it's NP complete

Related problems also hard to solve / approximate

D Gibney & SV Thankachan, "On the Hardness and Inapproximability of Recognizing Wheeler Graphs." 27th Annual European Symposium on Algorithms (ESA 2019), pp51:1--51:16 Exists an order over nodes s.t.:

0 in-degree nodes come before others (1)

$$a < a' \Longrightarrow v < v'$$
 (2)

$$(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$$

0 in-degree nodes come before others (1)

$$a < a' \Longrightarrow v < v'$$
 (2)

Is this a wheeler graph?

$$(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$$

0 in-degree nodes come before others (1)

$$a < a' \Longrightarrow v < v'$$
 (2)

Is this a wheeler graph?

$$(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$$

0 in-degree nodes come before others (1)

$$a < a' \Longrightarrow v < v'$$
 (2)

Is this a wheeler graph?

$$(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$$

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

In 0 1 2 3 4 5 6

Out (0) (1) (2) (3) (4) (5) (6)

 $\text{In} \quad \boxed{0} \quad \boxed{1}$

Out (0) (1)

Original:

Original:

In (0) (1) (2) (3) (4) (5) (6)

Out (0) (1) (2) (3) (4) (5) (6)

$$a \prec a' \Longrightarrow v < v'$$

Blue destinations before green destinations before red

$$(a = a') \land (u < u') \Longrightarrow v \le v'$$

$$(a = a') \land (u < u') \Longrightarrow v \le v'$$

No same-color edges cross each other

0 in-degree nodes come before others (1)

For all pairs
$$a < a' \Longrightarrow v < v'$$
 (2) of edges $a = a' \land u < u' \implies v \le v'$ (3)

Is this a Wheeler Graph? No

g a t t a g a t \$
$$a < a' \text{ but } v = v' \quad (2) \text{ cannot hold}$$

0 in-degree nodes come before others (1)

For all pairs
$$a \prec a' \Longrightarrow v \prec v'$$
 (2) of edges $a = a' \land u \prec u' \Rightarrow v \leq v'$ (3)

What if we flip edges to follow the direction of matching?

0 in-degree nodes come before others (1)

For all pairs
$$a < a' \Longrightarrow v < v'$$
 (2) of edges $a = a' \land u < u' \implies v \le v'$ (3)

Successors of edges labeled:

0 in-degree nodes come before others (1)

For all pairs
$$a \prec a' \Longrightarrow v \prec v'$$
 (2) of edges $a = a' \land u \prec u' \Rightarrow v \leq v'$ (3)

Successors of edges labeled: a: $\{1, 2, 3\}$ g: $\{5, 6\}$ c: $\{4\}$ t: $\{7, 8, 9\}$

Exercise: prove (3) is satisfied for all pairs of edges