Wheeler graphs, part 3: Definition

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

BWT: matching

For some graphs, total order exists

For others, not (but we can "fix" them sometimes)

Which graphs does it work for?

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

(2) $a < a' \Longrightarrow v < v'$

An edge-labeled directed graph is a *Wheeler Graph* if nodes can be ordered such that:

(1) 0 in-degree nodes come before others

For all pairs of edges e = (u, v), e' = (u', v')labeled a, a' respectively, we have:

(2) $a \prec a' \Longrightarrow v \prec v',$ (3) $(a = a') \land (u \prec u') \Longrightarrow v \leq v'.$

$A \implies B$ "A implies B"

When left-hand side (LHS) is true, RHS must be true When LHS is false, RHS can be whatever it wants

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \prec v'$

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \prec v'$

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \lt v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \prec v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

(2) For all pairs of edges e = (u, v), e' = (u', v')labeled $a, a': a \prec a' \Longrightarrow v \prec v'$

If labels differ, destination of smaller-label edge comes before destination of larger-label edge

Corollary: cannot have 2 incoming edges with different labels

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

(3) For all pairs of edges e = (u, v), e' = (u', v')labeled a, a': $(a = a') \land (u < u') \Longrightarrow v \le v'$.

If labels match but sources differ, destination of the lower-source edge must not come after destination of the higher-source edge

0 in-degree nodes come before others (1) For all pairs $a \prec a' \Longrightarrow v < v'$ (2) of edges $(a = a') \land (u < u') \Longrightarrow v \leq v'$ (3)

Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

For given ordering, not hard

Properties are easily checked by looping over nodes, edges, pairs of edges

Exists an order over nodes s.t.:

0 in-degree nodes come before others (1)

- $a \prec a' \Longrightarrow v < v'$ (2)
- $(a = a') \land (u < u') \Longrightarrow v \le v' \quad (3)$

Given an edge-labeled, directed multigraph, how hard is it to decide if it is a Wheeler Graph?

From scratch, it's NP complete

Related problems also hard to solve / approximate

D Gibney & SV Thankachan, "On the Hardness and Inapproximability of Recognizing Wheeler Graphs." 27th Annual European Symposium on Algorithms (ESA 2019), pp51:1--51:16 Exists an order over nodes s.t.: 0 in-degree nodes come before others (1) $a \prec a' \Longrightarrow v < v'$ (2) $(a = a') \land (u < u') \Longrightarrow v \le v'$ (3)

Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$ (2)

Is this a wheeler graph? $(a = a') \land (u < u') \implies v \le v'$ (3)

Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$ (2)

Is this a wheeler graph? $(a = a') \land (u < u') \implies v \le v'$ (3)

Wheeler graphs 0 in-degree nodes come before others (1)

 $a \prec a' \Longrightarrow v \lt v'$ (2)

Is this a wheeler graph? $(a = a') \land (u < u') \Longrightarrow v \le v'$ (3)

(0) (1) (2) (3) (4) (5) (6)

(0) (1) (2) (3) (4) (5) (6)

(0) (1) (2) (3) (4) (5) (6)

$\ln (0) (1) (2) (3) (4) (5) (6)$

Out (0) (1) (2) (3) (4) (5) (6)

Original:

Original:

 $a \prec a' \Longrightarrow v < v'$

$$a \prec a' \Longrightarrow v < v'$$

Blue destinations before green destinations before red

 $(a = a') \land (u < u') \Longrightarrow v \le v'$

 $(a = a') \land (u < u') \Longrightarrow v \le v'$

No same-color edges cross each other

0 in-degree nodes come before others (1) For all pairs $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$

Is this a Wheeler Graph? No

0 in-degree nodes come before others (1) For all pairs $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$

What if we flip edges to follow the direction of matching?

0 in-degree nodes come before others (1) For all pairs $\begin{bmatrix} a \prec a' \Longrightarrow v < v' & (2) \\ (a = a') \land (u < u') \Longrightarrow v \le v' & (3) \end{bmatrix}$

Successors of edges labeled:

0 in-degree nodes come before others (1) For all pairs $a \prec a' \Longrightarrow v < v'$ (2) of edges $(a = a') \land (u < u') \Longrightarrow v \leq v'$ (3)

<u>Exercise</u>: prove (3) is satisfied for all pairs of edges