
Clark’s Select
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Clark's select

Unlike rank:

Chunks are defined by # 1s, not # bits

Two layers of “sparsity”

Answer is an offset into bitvector

Bitvectors

0
1
1
0
1
0
1
0
0
0
1
0
1

B
B . rank0(5) = 2

B . select0(3) = 7

B . select1(5) = 12

[0, n)
[0, m)

B . rank1

B . select1

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

n

...

Split the string into chunks each containing

 1-bitslog2 n

Larger chunks are sparse; 1’s spread out

T :

Clark's select

Shorter chunks are dense; 1’s packed together

...

Each chunk contains 1-bitslog2 n

Clark's select

We store offset of each chunk start

…

 This takes:

...

Each chunk contains 1-bitslog2 n

Clark's select

We store offset of each chunk start

O (n
log2 n

log n) = O (n
log n) = ǒ(n)

…

bits

 This takes:

Worst case:
every bit set

...

Clark's select

...
...

...
...

...

Chunks bits in length
are sparse, others dense

≥ log4 n

...

Chunks bits in length
are sparse, others dense

≥ log4 n

Clark's select

...
...

...
...

...

sparse
dense

log4 n

 is square of the # of set bits per chunk, log4 n log2 n

(“sparse” roughly means “less than are set”)# bits

Pre-calculate for 1-bits in sparse chunksB . select1

Clark's select: sparse case

Pre-calculate for 1-bits in sparse chunksB . select1

Clark's select: sparse case

O (n
log4 n

⋅ log n ⋅ log2 n)
Max # sparse chunks # bits to

store 1
answer

answers
per chunk

= O (n
log n) = ǒ(n)

...

log n

n
log2 n

Offsets for 1-bits
in sparse chunks

...

Space is so farǒ(n)

So far, strategy for select is:

(a) find what chunk it's in (division)

(b) if chunk is sparse (bits)≥ log4 n
(b.i) look up in sparse offset table

Clark's select

...

log n

(c) if chunk is dense (bits)< log4 n
TODO

n
log2 n

Offsets for 1-bits
in sparse chunks

Offsets for chunks

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select: dense case

...
...

...
...

...

Dense chunks are shorter than bits; further
subdivide to sub-chunks of 1-bits each

log4 n
log n

log4 n

...
...

...
...

Sub-chunks with 1slog nChunks with 1slog2 n

dense

Clark's select: dense case

Store relative offset per sub-chunk

...
...

...

Clark's select: dense case

Store relative offset per sub-chunk

At most sub-chunksn/ log n

Containing chunk has
bits, so relative offset fits in

 bits

< log4 n

O(log log4 n) = O(log log n)

...
...

...

Clark's select: dense case

Store relative offset per sub-chunk

At most sub-chunksn/ log n

Containing chunk has
bits, so relative offset fits in

 bits

< log4 n

O(log log4 n) = O(log log n)

...
...

...

Clark's select: dense case

Store relative offset per sub-chunk

At most sub-chunksn/ log n

Containing chunk has
bits, so relative offset fits in

 bits

< log4 n

O(log log4 n) = O(log log n)

...
...

...

Overall: O (n log log n
log n) = ǒ(n)

So far:

Clark's select

(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (division by)log n
(c.iii) look up sub-chunk’s relative offset

TODO: need to look within sub-chunks

(a) find what chunk it's in (division)

(b) if chunk is sparse
(b.i) look up in sparse offset table

(c) if chunk is dense

So far:

Clark's select

(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (division by)log n
(c.iii) look up sub-chunk’s relative offset

TODO: need to look within sub-chunks

(a) find what chunk it's in (division)

(b) if chunk is sparse
(b.i) look up in sparse offset table

(c) if chunk is dense

So far:

Clark's select

(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (division by)log n
(c.iii) look up sub-chunk’s relative offset

TODO: need to look within sub-chunks

(a) find what chunk it's in (division)

(b) if chunk is sparse
(b.i) look up in sparse offset table

(c) if chunk is dense

Clark's select: dense/sparse case

Sub-chunks with bits are sparse;
we simply store relative offsets for every 1-bit

≥ 1/2 log n

Clark's select: dense/sparse case

Sub-chunks with bits are sparse;
we simply store relative offsets for every 1-bit

≥ 1/2 log n

Overall: O (n
1/2 log n

log log n log n)
Max # sparse

sub-chunks
bits to store
1 answer (rel.
to chunk)

1-bits
per chunk

Clark's select: dense/sparse case

Sub-chunks with bits are sparse;
we simply store relative offsets for every 1-bit

≥ 1/2 log n

Overall: O (n
1/2 log n

log log n log n)

= O (
n log n log log n

log n) = O (n log log n
log n) = ǒ(n)

Max # sparse
sub-chunks

bits to store
1 answer (rel.
to chunk)

1-bits
per chunk

...

n
log n

log log n

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select

Split into -weight chunkslog2 n
...

Sparse (-length)≥ log4 n

Split into -weight sub-chunkslog nLookup table for
each 1-bit ✅

Dense (-length)< log4 n

Sparse (-length)≥ 1/2 log n Dense (-length)< 1/2 log n

Lookup table for all
possible sub-chunks ✅

Lookup table for
each 1-bit ✅

Clark's select: dense/dense case

Sub-chunks bits are dense;
pre-calculate answers for all such chunks, like rank:

< 1/2 log n

...
...

...

21/2 log n ⋅ log x ⋅ log log x
possible

bitvectors
possible

1-bits
answer

Clark's select: dense/dense case

Sub-chunks bits are dense;
pre-calculate answers for all such chunks, like rank:

< 1/2 log n

...
...

...

21/2 log n ⋅ log n ⋅ log log n
possible

bitvectors
possible

1-bits
answer

Clark's select: dense/dense case

Sub-chunks bits are dense;
pre-calculate answers for all such chunks, like rank:

< 1/2 log n

...
...

...

21/2 log n ⋅ log n ⋅ log log n
possible

bitvectors
possible

1-bits
answer

Clark's select: dense/dense case

Sub-chunks bits are dense;
pre-calculate answers for all such chunks, like rank:

< 1/2 log n

...
...

...

21/2 log n ⋅ log n ⋅ log log n
possible

bitvectors
possible

1-bits
answer

= O (n log n log log n)
= ǒ(n) ...

n log n

log log n

(a) find what chunk it's in (division by)log2 n
(b) if chunk is sparse (bits)≥ log4 n

(b.i) look up answer in sparse offset table

Clark's select

(c) if chunk is dense (bits)< log4 n

(c.ii) find what sub-chunk it’s in (divide by)log n
(c.iii) look up sub-chunk’s relative offset
(c.iv) if sub-chunk is sparse (bits)≥ 1/2 log n

(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)

(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

(c.i) look up chunk’s offset

(a) find what chunk it's in (division by)log2 n
(b) if chunk is sparse (bits)≥ log4 n

(b.i) look up answer in sparse offset table

Clark's select

(c) if chunk is dense (bits)< log4 n

(c.ii) find what sub-chunk it’s in (divide by)log n
(c.iii) look up sub-chunk’s relative offset
(c.iv) if sub-chunk is sparse (bits)≥ 1/2 log n

(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)

(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

(c.i) look up chunk’s offset

(a) find what chunk it's in (division by)log2 n
(b) if chunk is sparse (bits)≥ log4 n

(b.i) look up answer in sparse offset table

Clark's select

(c) if chunk is dense (bits)< log4 n

(c.ii) find what sub-chunk it’s in (divide by)log n
(c.iii) look up sub-chunk’s relative offset
(c.iv) if sub-chunk is sparse (bits)≥ 1/2 log n

(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)

(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

(c.i) look up chunk’s offset

(a) find what chunk it's in (division by)log2 n
(b) if chunk is sparse (bits)≥ log4 n

(b.i) look up answer in sparse offset table

Clark's select

(c) if chunk is dense (bits)< log4 n

(c.ii) find what sub-chunk it’s in (divide by)log n
(c.iii) look up sub-chunk’s relative offset
(c.iv) if sub-chunk is sparse (bits)≥ 1/2 log n

(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)

(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

(c.i) look up chunk’s offset

(a) find what chunk it's in (division by)log2 n
(b) if chunk is sparse (bits)≥ log4 n

(b.i) look up answer in sparse offset table

Clark's select

(c) if chunk is dense (bits)< log4 n

(c.ii) find what sub-chunk it’s in (divide by)log n
(c.iii) look up sub-chunk’s relative offset
(c.iv) if sub-chunk is sparse (bits)≥ 1/2 log n

(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)

(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

(c.i) look up chunk’s offset

...

Clark's select

log n

...

n
log2 n

log n

Sparse
chunk
offsets

Offsets for
1-bits in
sparse
chunks

...

n
log n

log log n

...
n

log n

log log n

Answers for
1-bits in

dense/sparse
sub-chunks

Dense
sub-chunk

relative offsets

n
log2 n

...

n log n

log log n

Answers for all
possible

dense/dense
sub-chunks

Overall, space is ǒ(n)

Time Space (bits) Note

Lookup

B . select1

B . rank1

B . access O(1)

O(1) ǒ(n)

Bitvectors

The dream! 🛌 💭

O(1) ǒ(n)

n

✅ Jacobson

✅ Clark

🎆🥳🎉The reality!

