Clark’s Select

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Clark's select

Unlike rank:

Chunks are defined by # 1s, not # bits
Two layers of “sparsity”

Answer is an offset into bitvector

Bitvectors

B .ranky(5) = 2

B .selecty(3) =7

_

B .select;(5) =12

B . rank;
—

4—
B . select;

[0, m)

R OROCOOROROIOR RO

Clark's select

e
Splitinto log2 n-weight chunks

B N S - I e
Sparse (> log”* n-length) Dense (< log* n-length)
I I N R
Lookup table for Splitinto 4/1og n-weight sub-chunks
each 1-bit (4 NN EREEE I A W
Sparse (> 1/21og n-length) Dense (< 1/21og n-length)
IEENER (]
Lookup table for Lookup table for all

each 1-bit possible sub-chunks

Clark's select

I
Splitinto lc)g2 n-weight chunks

B I S - I e
Sparse (> log®* n-length) Dense (< log* n-length)
I I e
Lookup table for Split into 4/1og n-weight sub-chunks
each 1-bit (4 NN EREEE I A W
Sparse (> 1/21og n-length) Dense (< 1/21og n-length)
IEENER R
Lookup table for Lookup table for all

each 1-bit possible sub-chunks

Clark's select

e
Splitinto log2 n-weight chunks
B D S aE - s

Sparse (> log* n-length)
I

Lookup table for
each 1-bit

Clark's select

Lt
: n :

Split the string into chunks each containing
log?n 1-bits

Larger chunks are sparse; 1's spread out

Shorter chunks are dense; 1's packed together

Clark's select

Each chunk contains log2 n 1-bits

We store offset of each chunk start

This takes:

Clark's select

Each chunk contains log2 n 1-bits

We store offset of each chunk start

This takes:

O0(——1logn)=0(——) =50 bits
log?n logn

Worst case:
every bit set

Clark's select

Chunks > log* n bits in length
are sparse, others dense

Clark's select

Chunks > log* n bits in length

_

- are sparse, others dense
-

I

_ dense

_ sparse
-

log* n is square of the # of set bits per chunk, log” n

(“sparse” roughly means “less than \/# bits are set”)

Clark's select: sparse case

Pre-calculate B . select; for 1-bits in sparse chunks

Clark's select: sparse case

Pre-calculate B . select; for 1-bits in sparse chunks

log

" 2
0, -logn - log™n

log*n \ N
: : N
Max # sparse chunks #bitsto #answers oo2, P~
store 1 per chunk
answer

n
— 0 — 5(”) Offsets for 1-bits
lOg n in sparse chunks

Clark's select

Offsets for chunks

- 1 1 1 I B
log 7 So far, strategy for select is:

(a) find what chunk it's in (division)

(b) if chunkis sparse (> log4 n bits)

log2n . (b.i) look up in sparse offset table

(c) if chunkis dense (< 10g4 n bits)
TODO

Offsets for 1-bits
in sparse chunks

Space is 0(n) so far

Clark's select

e
Splitinto log2 n-weight chunks
B D S aE - s

Sparse (> log* n-length)
I

Lookup table for
each 1-bit

Clark's select

e
Splitinto log2 n-weight chunks

B D - s
Sparse (> log”* n-length) Dense (< log* n-length)
I & B B B
Lookup table for Splitinto \/@—Weight sub-chunks
each 1-bit B R I

Sparse (> 1/2 log n-length)

Lookup table for
each 1-bit

Clark's select: dense case

Dense chunks are shorter than log4 n bits; further
subdivide to sub-chunks of \/log n 1-bits each

\[~

Chunks with log® 7 1s Sub-chunks with \/logn 1s

Clark's select: dense case

Store relative offset per sub-chunk

Clark's select: dense case

Store relative offset per sub-chunk

At most n/y/logn sub-chunks

Containing chunk has < log* n
bits, so relative offset fits in

Clark's select: dense case

Store relative offset per sub-chunk

At most n/4/logn sub-chunks

Containing chunk has < log*n
bits, so relative offset fits in

O(log log* n) = O(log log n) bits

Clark's select: dense case

Store relative offset per sub-chunk

At most n/4/logn sub-chunks

Containing chunk has < log*n
bits, so relative offset fits in

O(log log* n) = O(log log n) bits

loglo
Overall: O - o L = o(n)
\/logn

Clark's select

So far:

(a) iind what chunk it's in (division)
(b) if chunkis sparse

(b.i) look up in sparse offset table

Clark's select

So far:

(a) iind what chunk it's in (division)
(b) if chunkis sparse

(b.i) look up in sparse offset table
(c) if chunkis dense

(c.i) look up chunk’s offset

(c.ii) ind what sub-chunkiit’s in (division by \/log n)

(c.iii) look up sub-chunk’s relative offset

Clark's select

So far:

(a) find what chunk it's in (division)
(b) if chunkis sparse
(b.i) look up in sparse offset table

(c) if chunkis dense
(c.i) look up chunk’s offset
(c.ii) ind what sub-chunkiit’s in (division by \/log n)
(c.iii) look up sub-chunk’s relative offset

TODO: need to look within sub-chunks

Clark's select: dense/sparse case

Sub-chunks with > 1/21ogn bits are sparse;
we simply store relative offsets for every 1-bit

Clark's select: dense/sparse case

Sub-chunks with > 1/21ogn bits are sparse;
we simply store relative offsets for every 1-bit

Overall: O loglogn 4/logn
1/2 lOg n || !
: | AN N
Max # sparse # bits to store # 1-bits
sub-chunks 1 answer (rel. per chunk

to chunk)

Clark's select: dense/sparse case

Sub-chunks with > 1/21ogn bits are sparse;
we simply store relative offsets for every 1-bit

. 0 loglogn +/logn loglogn
Overall: (1/210gn | glog ::\/ g :) _108°08
: | AN N
Max # sparse # bits to store # 1-bits
sub-chunks 1 answer (rel. per chunk .
to chunk)

ny/logn loglogn loo]
=0(v/logn loglog):0(n og ogn>:5(n)

logn

Clark's select

e
Splitinto log2 n-weight chunks

B D - s
Sparse (> log”* n-length) Dense (< log* n-length)
I & B B B
Lookup table for Splitinto \/@—Weight sub-chunks
each 1-bit B R I

Sparse (> 1/2 log n-length)

Lookup table for
each 1-bit

Clark's select

e
Splitinto log2 n-weight chunks

B N S - I e
Sparse (> log”* n-length) Dense (< log* n-length)
I I N R
Lookup table for Splitinto 4/1og n-weight sub-chunks
each 1-bit (4 NN EREEE I A W
Sparse (> 1/21og n-length) Dense (< 1/21og n-length)
IEENER (]
Lookup table for Lookup table for all

each 1-bit possible sub-chunks

Clark's select: dense/dense case

Sub-chunks < 1/21ogn bits are dense;
IIII pre-calculate answers for all such chunks, like rank:

21/2 logn

possible
bitvectors

Clark's select: dense/dense case

Sub-chunks < 1/21ogn bits are dense;
IIII pre-calculate answers for all such chunks, like rank:

IIII 21/210gn . \/logn

possible possible
' bitvectors 1-bits

Clark's select: dense/dense case

Sub-chunks < 1/21ogn bits are dense;
IIII pre-calculate answers for all such chunks, like rank:

2l/zlogn . /logn - loglogn

possible possible answer
bitvectors 1-bits

Clark's select: dense/dense case

Sub-chunks < 1/21ogn bits are dense;
IIII pre-calculate answers for all such chunks, like rank:

pl/zlogn, y9ogn -loglogn loglogn

possible possible answer
bitvectors 1-bits

W —o(ymmeken) v
"

Clark's select

(a) iind what chunk it's in (division by log2 n)
(b) if chunk s sparse (> lc)g4 n bits)
(b.i) look up answer in sparse offset table

Clark's select

(a) iind what chunk it's in (division by log2 n)
(b) if chunk s sparse (> lc)g4 n bits)
(b.i) look up answer in sparse offset table

(c) if chunkis dense (< 10g4 n bits)
(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (divide by y/log n)

Clark's select

(a) iind what chunk it's in (division by log2 n)
(b) if chunk s sparse (> lc)g4 n bits)
(b.i) look up answer in sparse offset table

(c) if chunkis dense (< 10g4 n bits)
(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (divide by y/log n)
(c.iii) look up sub-chunk’s relative offset

(c.iv) if sub-chunk is sparse (> 1/2 log n bits)

(c.v) if sub-chunk is dense

Clark's select

(a) iind what chunk it's in (division by log2 n)
(b) if chunk s sparse (> lc)g4 n bits)
(b.i) look up answer in sparse offset table

(c) if chunkis dense (< 10g4 n bits)
(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (divide by y/log n)
(c.iii) look up sub-chunk’s relative offset

(c.iv) if sub-chunk is sparse (> 1/2 log n bits)
(c.iv.A) look up answer in
(c.iv.B) return (c.i) + (c.1ii) + (c.iv.A)

(c.v) if sub-chunk is dense

Clark's select

(a) iind what chunk it's in (division by log2 n)
(b) if chunk s sparse (> lc)g4 n bits)
(b.i) look up answer in sparse offset table

(c) if chunkis dense (< 10g4 n bits)
(c.i) look up chunk’s offset

(c.ii) find what sub-chunk it’s in (divide by y/log n)
(c.iii) look up sub-chunk’s relative offset

(c.iv) if sub-chunk is sparse (> 1/2 log n bits)
(c.iv.A) look up answer in
(c.iv.B) return (c.i) + (c.1ii) + (c.iv.A)
(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

Clark's select

Overall, space is 0(n)

logn _loglogn loglogn _loglogn

Sparse Offsets for Dense Answers for Answers for all
chunk 1-bits in sub-chunk 1-bits in possible
offsets sparse relative offsets dense/sparse dense/dense

chunks sub-chunks sub-chunks

Bitvectors
The dream! k= The reality! EREa8s

Time : Space (bits) : Note
