Clark's Select

Ben Langmead

(2)
 JOHNS HOPKINS

WHITING SCHOOL of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Clark's select

Unlike rank:
Chunks are defined by \# 1s, not \# bits
Two layers of "sparsity"
Answer is an offset into bitvector

Bitvectors

Clark's select

Split into $\log ^{2} n$-weight chunks

Sparse ($\geq \log ^{4} n$-length $)$
 Lookup table for each 1-bit $\sqrt{\text { V }}$

Sparse ($\geq 1 / 2 \log n$-length)

Lookup table for each 1-bit $\sqrt{\text { V }}$

Dense ($<\log ^{4} n$-length)

Split into $\sqrt{\log n}$-weight sub-chunks

Lookup table for all possible sub-chunks ∇

Clark's select

Split into $\log ^{2} n$-weight chunks

$$
\text { Sparse (} \geq \log ^{4} n \text {-length) }
$$

Lookup table for each 1-bit $\sqrt{\text { V }}$

Dense ($<\log ^{4} n$-length)

Split into $\sqrt{\log n}$-weight sub-chunks
\square

Sparse ($\geq 1 / 2 \log n$-length)

Dense ($<1 / 2 \log n$-length)
\square

Lookup table for each 1-bit $\sqrt{\text { V }}$

Lookup table for all possible sub-chunks $\sqrt{ }$

Clark's select

Split into $\log ^{2} n$-weight chunks

Sparse ($\geq 1 / 2 \log n$-length)
Dense ($<1 / 2 \log n$-length $)$

Lookup table for

Clark's select

Split the string into chunks each containing
$\log ^{2} n$ 1-bits

Larger chunks are sparse; 1 's spread out
Shorter chunks are dense; 1's packed together

Clark's select

Each chunk contains $\log ^{2} n$ 1-bits

We store offset of each chunk start
This takes:

Clark's select

Each chunk contains $\log ^{2} n$ 1-bits

We store offset of each chunk start
This takes:
$O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right)=\check{o}(n)$ bits
Worst case:
every bit set

Clark's select

Chunks $\geq \log ^{4} n$ bits in length are sparse, others dense

Clark's select

$\log ^{4} n$ is square of the \# of set bits per chunk, $\log ^{2} n$ ("sparse" roughly means "less than $\sqrt{\# \text { bits }}$ are set")

Clark's select: sparse case

Pre-calculate B. select ${ }_{1}$ for 1 -bits in sparse chunks

Clark's select: sparse case

Pre-calculate B. select ${ }_{1}$ for 1-bits in sparse chunks

$$
O\left(\frac{n}{\log ^{4} n} \cdot \log n \cdot \log ^{2} n\right)
$$

Max \# sparse chunks \# bits to store 1 answer

$$
=O\left(\frac{n}{\log n}\right)=\check{o}(n)
$$

Offsets for 1-bits
in sparse chunks

Clark's select

Offsets for chunks

So far, strategy for select is:
(a) find what chunk it's in (division)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up in sparse offset table
(c) if chunk is dense ($<\log ^{4} n$ bits) TODO

Offsets for 1-bits in sparse chunks

Space is $\check{o}(n)$ so far

Clark's select

Split into $\log ^{2} n$-weight chunks

Sparse ($\geq 1 / 2 \log n$-length)
Dense ($<1 / 2 \log n$-length $)$

Lookup table for

Clark's select

Split into $\log ^{2} n$-weight chunks

Lookup table for each 1-bit

Sparse ($\geq 1 / 2 \log n$-length)
Dense ($<1 / 2 \log n$-length)
\square
Lookup table for each 1-bit ∇

Dense ($<\log ^{4} n$-length)

Split into $\sqrt{\log n}$-weight sub-chunks

Clark's select: dense case

Dense chunks are shorter than $\log ^{4} n$ bits; further subdivide to sub-chunks of $\sqrt{\log n} 1$-bits each

Clark's select: dense case

Store relative offset per sub-chunk

Clark's select: dense case

: ㅁロ
 $\square \square \square \square$

Store relative offset per sub-chunk At most $n / \sqrt{\log n}$ sub-chunks

Containing chunk has $<\log ^{4} n$ bits, so relative offset fits in

Clark's select: dense case

$\square \square \square \square$

Store relative offset per sub-chunk At most $n / \sqrt{\log n}$ sub-chunks

Containing chunk has $<\log ^{4} n$ bits, so relative offset fits in $O\left(\log \log ^{4} n\right)=O(\log \log n)$ bits

Clark's select: dense case

Store relative offset per sub-chunk At most $n / \sqrt{\log n}$ sub-chunks
Containing chunk has $<\log ^{4} n$ bits, so relative offset fits in
$O\left(\log \log ^{4} n\right)=O(\log \log n)$ bits
Overall: $O\left(\frac{n \log \log n}{\sqrt{\log n}}\right)=\check{o}(n)$

Clark's select

So far:
(a) find what chunk it's in (division)
(b) if chunk is sparse
(b.i) look up in sparse offset table

Clark's select
So far:
(a) find what chunk it's in (division)
(b) if chunk is sparse
(b.i) look up in sparse offset table
(c) if chunk is dense
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (division by $\sqrt{\log n}$)
(c.iii) look up sub-chunk's relative offset

Clark's select
So far:
(a) find what chunk it's in (division)
(b) if chunk is sparse
(b.i) look up in sparse offset table
(c) if chunk is dense
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (division by $\sqrt{\log n}$)
(c.iii) look up sub-chunk's relative offset

TODO: need to look within sub-chunks

Clark's select: dense/sparse case
Sub-chunks with $\geq 1 / 2 \log n$ bits are sparse; we simply store relative offsets for every 1 -bit

Clark's select: dense/sparse case

Sub-chunks with $\geq 1 / 2 \log n$ bits are sparse; we simply store relative offsets for every 1-bit

Overall: $O\left(\frac{n}{1 / 2 \log n}, \frac{\log \log n}{\sqrt{\log n}}\right)$

$$
\begin{array}{rll}
\text { Max \# sparse } & \text { \# bits to store } & \text { \# 1-bits } \\
\text { sub-chunks } & 1 \text { answer (rel. } & \text { per chunk } \\
& \text { to chunk) } &
\end{array}
$$

Clark's select: dense/sparse case

Sub-chunks with $\geq 1 / 2 \log n$ bits are sparse; we simply store relative offsets for every 1-bit

Overall: $O\left(\frac{n}{1 / 2 \log n}, \stackrel{\log \log n}{\sqrt{\log n}}\right)$ Max \# sparse \# bits to store \# 1-bits sub-chunks 1 answer (rel. per chunk to chunk)
$=O\left(\frac{n \sqrt{\log n} \log \log n}{\log n}\right)=O\left(\frac{n \log \log n}{\sqrt{\log n}}\right)=\check{o}(n)$

Clark's select

Split into $\log ^{2} n$-weight chunks

Lookup table for each 1-bit

Sparse ($\geq 1 / 2 \log n$-length)
Dense ($<1 / 2 \log n$-length)
\square
Lookup table for each 1-bit ∇

Dense ($<\log ^{4} n$-length)

Split into $\sqrt{\log n}$-weight sub-chunks

Clark's select

Split into $\log ^{2} n$-weight chunks

Sparse ($\geq \log ^{4} n$-length $)$
 Lookup table for each 1-bit $\sqrt{\text { V }}$

Sparse ($\geq 1 / 2 \log n$-length)

Lookup table for each 1-bit $\sqrt{\text { V }}$

Dense ($<\log ^{4} n$-length)

Split into $\sqrt{\log n}$-weight sub-chunks

Lookup table for all possible sub-chunks ∇

Clark's select: dense/dense case

Sub-chunks $<1 / 2 \log n$ bits are dense; pre-calculate answers for all such chunks, like rank:

$2^{1 / 2 \log n}$
possible
bitvectors

Clark's select: dense/dense case

Sub-chunks $<1 / 2 \log n$ bits are dense; pre-calculate answers for all such chunks, like rank:

$$
\begin{array}{r}
2^{1 / 2 \log n} \cdot \sqrt{\log n} \\
\text { possible } \\
\text { bitvectors }
\end{array} \begin{gathered}
\text { possible } \\
1 \text {-bits }
\end{gathered}
$$

Clark's select: dense/dense case

Sub-chunks $<1 / 2 \log n$ bits are dense; pre-calculate answers for all such chunks, like rank:

$$
2^{2^{1 / 2 \log n} \cdot \sqrt{\log n} \cdot \log \log n} \underset{\substack{\text { possible } \\ \text { bitvectors } \\ 1 \text {-bits }}}{\text { answer }}
$$

Clark's select: dense/dense case

Sub-chunks $<1 / 2 \log n$ bits are dense; pre-calculate answers for all such chunks, like rank:

$$
\begin{aligned}
& 2^{1 / 2 \log n} \cdot \sqrt{\log n} \cdot \log \log n \\
& \text { possible } \begin{array}{c}
\text { possible } \\
\text { bitvectors } \\
1 \text {-bits }
\end{array} \\
& =O(\sqrt{n \log n} \log \log n) \quad \sqrt{n \log n} \\
& =\check{o}(n)
\end{aligned}
$$

Clark's select

(a) find what chunk it's in (division by $\log ^{2} n$)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up answer in sparse offset table

(c.ii) find what sub-chunk it's in (divide by $\sqrt{\log n} n$)(c.iii) look up sub-chunk's relative offset (c.iv) if sub-chunk is sparse ($\geq 1 / 2 \log n$ bits) (c.iv.A) look up answer in (c.iv.B) return (c.i) + (c.iii) + (c.iv.A) (c.v) if sub-chunk is dense (c.v.B) return (c.i) + (c.iiii) + (c.v.A)

Clark's select

(a) find what chunk it's in (division by $\log ^{2} n$)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up answer in sparse offset table
(c) if chunk is dense ($<\log ^{4} n$ bits)
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (divide by $\sqrt{\log n}$)
(c.iv) if sub-chunk is sparse ($\geq 1 / 2 \log n$ bits) (c.v.B) return (c.i) + (c.iiii) + (c.v.A)

Clark's select
(a) find what chunk it's in (division by $\log ^{2} n$)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up answer in sparse offset table
(c) if chunk is dense ($<\log ^{4} n$ bits)
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (divide by $\sqrt{\log n}$)
(c.iii) look up sub-chunk's relative offset
(c.iv) if sub-chunk is sparse ($\geq 1 / 2 \log n$ bits)
(c.v) if sub-chunk is dense

Clark's select
(a) find what chunk it's in (division by $\log ^{2} n$)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up answer in sparse offset table
(c) if chunk is dense ($<\log ^{4} n$ bits)
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (divide by $\sqrt{\log n}$)
(c.iii) look up sub-chunk's relative offset
(c.iv) if sub-chunk is sparse ($\geq 1 / 2 \log n$ bits)
(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)
(c.v) if sub-chunk is dense

Clark's select
(a) find what chunk it's in (division by $\log ^{2} n$)
(b) if chunk is sparse ($\geq \log ^{4} n$ bits)
(b.i) look up answer in sparse offset table
(c) if chunk is dense ($<\log ^{4} n$ bits)
(c.i) look up chunk's offset
(c.ii) find what sub-chunk it's in (divide by $\sqrt{\log n}$)
(c.iii) look up sub-chunk's relative offset
(c.iv) if sub-chunk is sparse ($\geq 1 / 2 \log n$ bits)
(c.iv.A) look up answer in sparse 1-bit table
(c.iv.B) return (c.i) + (c.iii) + (c.iv.A)
(c.v) if sub-chunk is dense
(c.v.A) look up answer in all possible dense/dense table
(c.v.B) return (c.i) + (c.iii) + (c.v.A)

Clark's select

Overall, space is $\check{o}(n)$

Sparse chunk offsets

Offsets for 1-bits in sparse chunks

Dense
sub-chunk relative offsets

Answers for 1-bits in
dense/sparse sub-chunks
$\log \log n$

Answers for all possible dense/dense sub-chunks

Bitvectors

The dream！

The reality！䍘気镜

Time ：Space（bits）
$O(1)$

n

$\begin{array}{l:l}\check{o}(n) & \nabla \text { Clark }\end{array}$
$\check{o}(n)$

Note

Lookup

Jacobson

