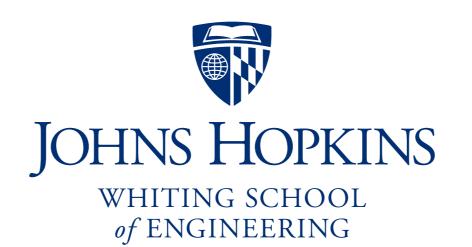
Ben Langmead



Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

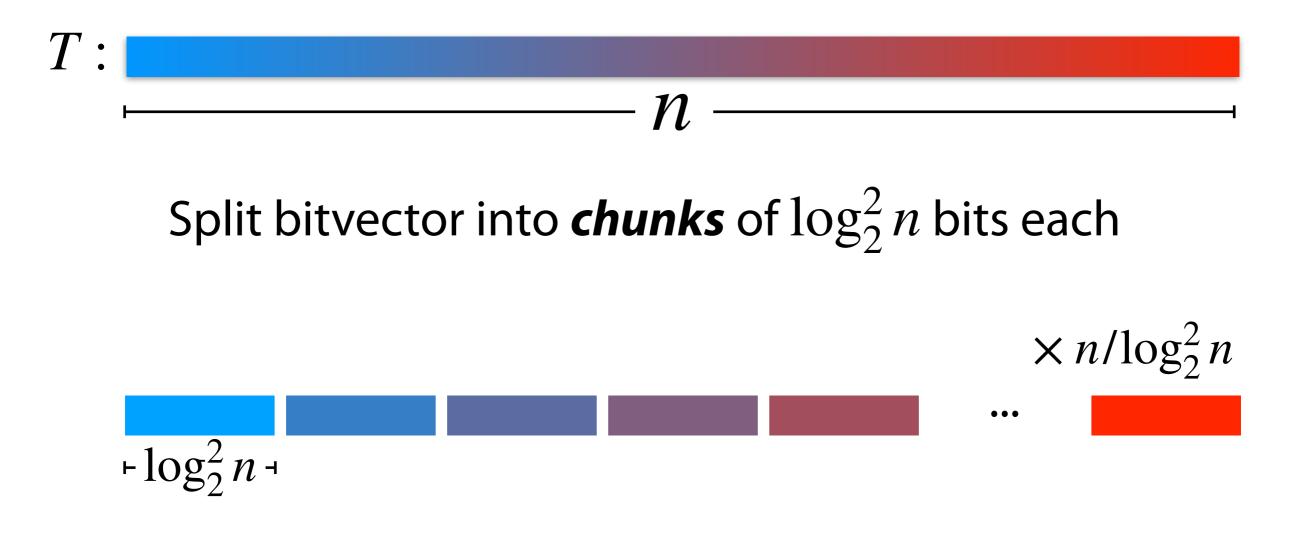
Basic ideas:

When a bitvector is sparse enough, we can simply *store answers for all 1-bits*

When a bitvector is short enough, we can store *all answers for all possible vectors and queries*

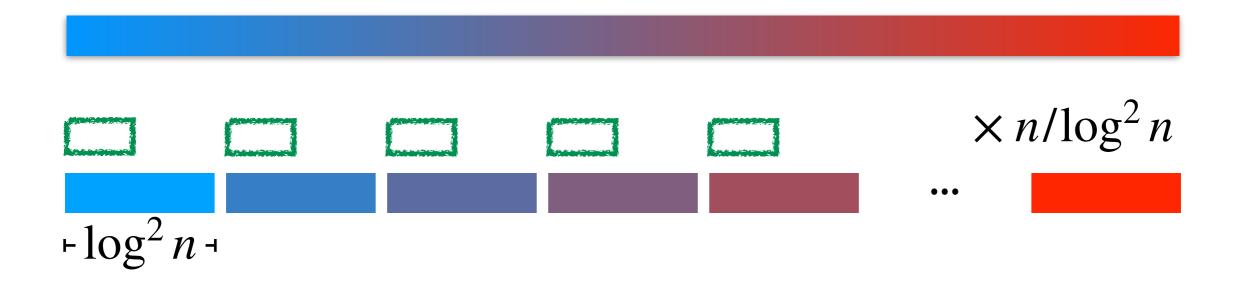
Here we think in terms of B . rank₁ queries, but B . rank₀ queries are doable with same methods

Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon University, 1988.



$$\log_2^2 n \equiv \left(\log_2 n\right)^2$$

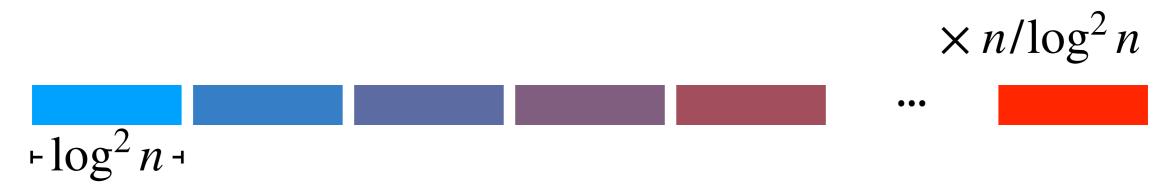
I'll omit base-2 from logs from now on

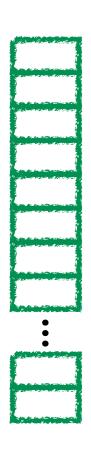


Store pre-calculated cumulative rank up to each chunk

$$O\left(\frac{\log n \cdot n/\log^2 n}{7}\right) = O\left(n/\log n\right) = \check{o}(n)$$

bits to store # chunks
cum. rank





So far, extra space is $\check{o}(n)$

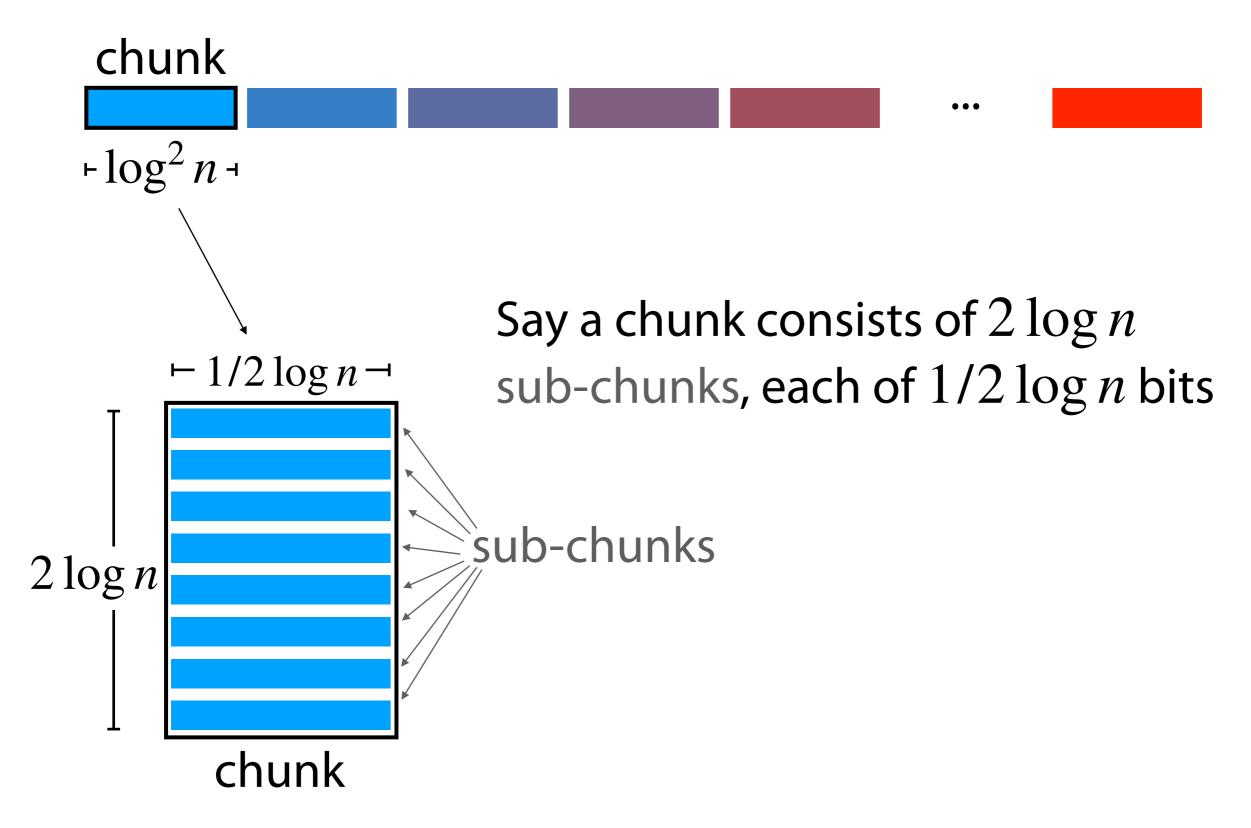
Finding a rank can be decomposed:

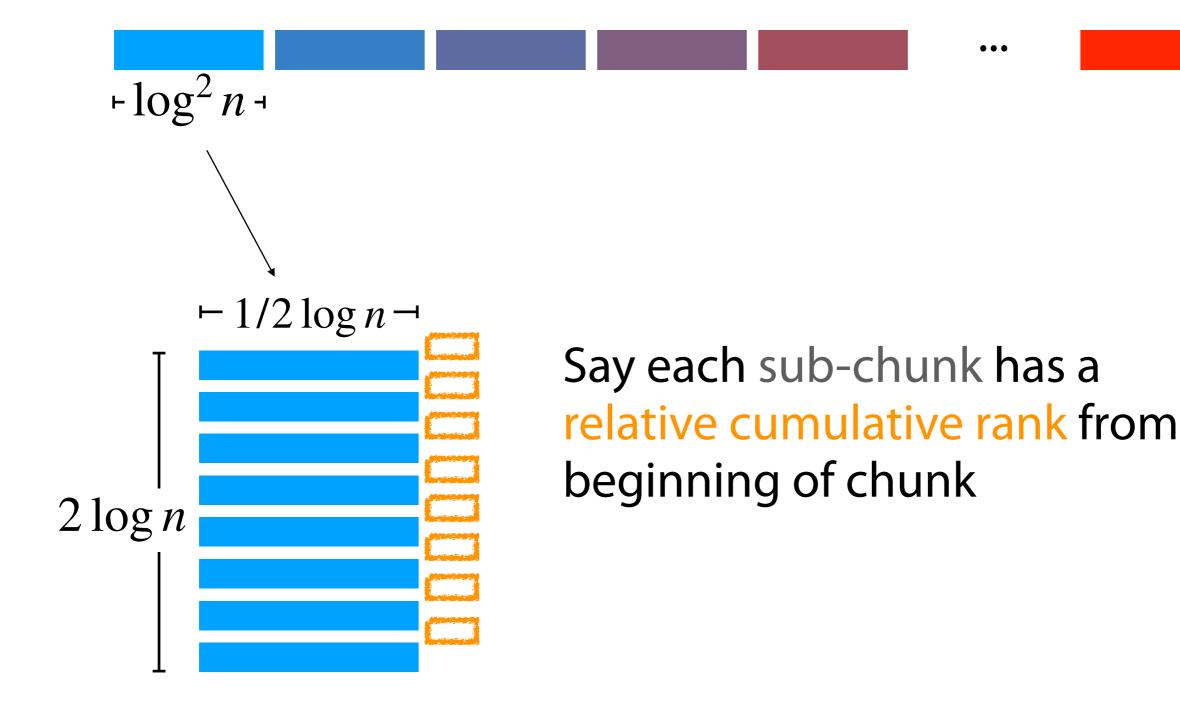
(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find (relative) rank *within* chunk

(**d**) add (b) + (c)



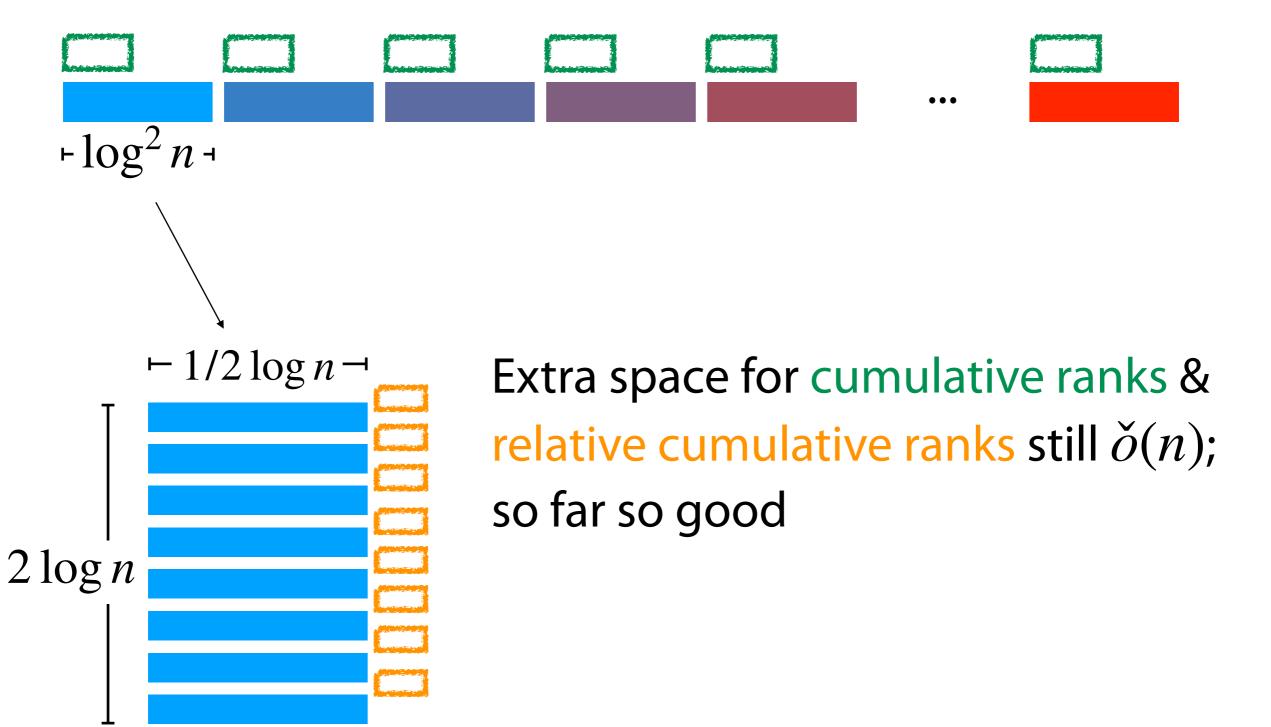


 $log^2 n$ - $\vdash 1/2 \log n \dashv$ $2\log n$

Since chunk has $\log^2 n$ bits, a relative cum. rank needs $\log \log^2 n = O(\log \log n)$ bits

 $O(n/\log n)$ sub-chunks overall (across all chunks), for total of $O(n \cdot \log \log n / \log n)$ bits for relative cum. ranks

 $O\left(n \cdot \log \log n / \log n\right) = \check{o}(n)$



 $+\log^2 n$ +

Finding a rank:

(a) find what chunk it's in (division)

...

(b) look up cumulative rank

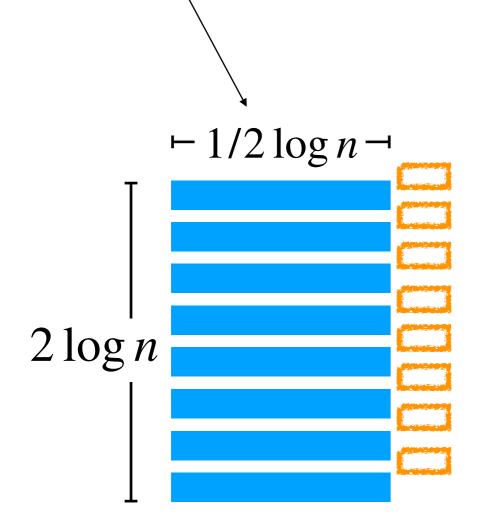
(c) find rank *within* chunk

(c.i) find what sub-chunk it's in

(c.ii) look up relative cum. rank

(c.iii) find rank *within* sub-chunk

(d) add (b) + (c.ii) + (c.iii)



⊢ 1/2 log n →
 Finding rank within a sub-chunk:
 two ways of thinking

Way 1: $1/2 \log n$ is ~ a machine word; use instructions like "population count" to find rank in O(1) time

Way 2: Lookup table

(Coming next)

Say we naively store answers to all rank queries for all length-*x* bitvectors. How many bits required?

 2^x possible bitvectors

Say we naively store answers to all rank queries for all length-*x* bitvectors. How many bits required?

 $2^x \cdot x$ possible possible bitvectors offsets

Say we naively store answers to all rank queries for all length-*x* bitvectors. How many bits required?

$$2^{x} \cdot x \cdot \log x$$

possible possible answer
bitvectors offsets

bi

Say we naively store answers to all rank queries for all length-*x* bitvectors. How many bits required?

$$2^{x} \cdot x \cdot \log x$$
possible possible answer
tvectors offsets
$$-1/2 \log n$$
Let $x = 1/2 \log n$

$$O\left(2^{1/2\log n} \cdot 1/2\log n \cdot \log 1/2\log n\right)$$
$$= O\left(\sqrt{n}\log n \log \log n\right) = \check{o}(n)$$

Finding a rank:

(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find rank *within* chunk

(c.i) find what sub-chunk it's in

(c.ii) look up relative cum. rank

(c.iii) find rank *within* sub-chunk

(d) add (b) + (c.ii) + (c.iii)

O(1)

