
Jacobson’s Rank
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Jacobson's rank

When a bitvector is sparse enough, we can
simply store answers for all 1-bits

When a bitvector is short enough, we can store
all answers for all possible vectors and queries

Here we think in terms of queries, but
 queries are doable with same methods

B . rank1
B . rank0

Basic ideas:

Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon University, 1988.

Jacobson's rank

n

log2
2 n

...
× n/log2

2 n

Split bitvector into chunks of bits eachlog2
2 n

log2
2 n ≡ (log2 n)2 I'll omit base-2 from

logs from now on

T :

Jacobson's rank

log2 n
...

× n/log2 n

Store pre-calculated cumulative rank up to each chunk

O (log n ⋅ n/log2 n) = O (n/log n) = ǒ(n)

bits to store
cum. rank

chunks

Jacobson's rank

log2 n
...

× n/log2 n

...

So far, extra space is ǒ(n)

Finding a rank can be decomposed:

(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find (relative) rank within chunk

(d) add (b) + (c) TODO

Jacobson's rank

log2 n
...

1/2 log n

2 log n

Say a chunk consists of
sub-chunks, each of bits

2 log n
1/2 log n

sub-chunks

chunk

chunk

Jacobson's rank

log2 n
...

1/2 log n

2 log n

Say each sub-chunk has a
relative cumulative rank from
beginning of chunk

Jacobson's rank

log2 n
...

1/2 log n

2 log n

Since chunk has bits, a
relative cum. rank needs

log2 n

log log2 n = O(log log n) bits

 sub-chunks overall
(across all chunks),
O (n/log n)
for total of
bits for relative cum. ranks

O (n ⋅ log log n/log n)

O (n ⋅ log log n/log n) = ǒ(n)

Jacobson's rank

log2 n
...

1/2 log n

2 log n

Extra space for cumulative ranks &
relative cumulative ranks still ;
so far so good

ǒ(n)

Jacobson's rank

log2 n
...

Finding a rank:

(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find rank within chunk

(d) add (b) + (c.ii) + (c.iii)

1/2 log n

2 log n
(c.ii) look up relative cum. rank

(c.iii) find rank within sub-chunk

TODO

(c.i) find what sub-chunk it's in

Jacobson's rank

Finding rank within a sub-chunk:
two ways of thinking

1/2 log n

Way 1: is ~ a machine word; use
instructions like "population count" to find
rank in time

1/2 log n

O(1)

Way 2: Lookup table

(Coming next)

Jacobson's rank

Say we naively store answers to all rank queries for
all length- bitvectors. How many bits required?x

2x ⋅ x ⋅ log x
possible

bitvectors

Jacobson's rank

Say we naively store answers to all rank queries for
all length- bitvectors. How many bits required?x

2x ⋅ x ⋅ log x
possible

bitvectors
possible
offsets

answer

Jacobson's rank

Say we naively store answers to all rank queries for
all length- bitvectors. How many bits required?x

2x ⋅ x ⋅ log x
possible

bitvectors
possible
offsets

answer

Jacobson's rank

1/2 log n

Say we naively store answers to all rank queries for
all length- bitvectors. How many bits required?x

Let x = 1/2 log n

O (21/2 log n ⋅ 1/2 log n ⋅ log 1/2 log n)
= O (n log n log log n) = ǒ(n)

2x ⋅ x ⋅ log x
possible

bitvectors
possible
offsets

answer

Jacobson's rank

Finding a rank:

a
b
c
d

(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find rank within chunk

(d) add (b) + (c.ii) + (c.iii)

(c.ii) look up relative cum. rank

(c.iii) find rank within sub-chunk

(c.i) find what sub-chunk it's in O(1)

Time Space (bits) Note

LookupB . access O(1)

Bitvectors

n

B . select1

B . rank1

O(1) ǒ(n)

ǒ(n)O(1)

??🧚🦄🧚??

✅ Jacobson

