Reversing the BWT Ben Langmead Department of Computer Science Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com). Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994 Give each character in T a rank: a b a a b a \$ Give each character in T a rank: Ranks aren't explicitly stored; we use them to distinguish occurrences Let's re-write the BWM with ranks... BWM with ranks: \$ a₀ b₀ a₁ a₂ b₁ a₃ a₃ \$ a₀ b₀ a₁ a₂ b₁ a₃ \$ b₁ a₃ \$ a₀ b₀ a₁ a₂ b₁ a₃ \$ a₀ b₀ a₁ a₂ b₁ a₃ \$ a₀ b₀ a₁ a₂ Look at first and last columns, called F and L And look at just the **a**s **a**s occur in the same order in F and L. As we look down columns, in both cases we see: $\mathbf{a_3}$, $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_0}$ $b_0 a_1 a_2 b_1 a_3$ \$ a_0 ``` F BWM with ranks: $ a_0 b_0 a_1 a_2 b_1 a_3 a_3 $ a_0 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_0 a_0 b_0 a_0 a_0 b_ ``` Same with **b**s: **b**₁, **b**₀ ``` F BWM with ranks: $ a_0 b_0 a_1 a_2 b_1 a_3 a_3 $ a_0 b_0 a_1 a_2 b_1 a_0 $ a_0 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_1 a_3 $ a_0 b_0 a_1 a_2 b_1 a_3 $ b_1 a_3 $ a_0 b_0 a_1 a_2 b_0 a_ ``` LF Mapping: The i^{th} occurrence of a character $c \in \Sigma$ in L and the i^{th} occurrence of c in F correspond to the same occurrence in T (i.e. have **same rank**) Why does the LF Mapping hold? Occurrences of c in F are sorted by right-context; same for L Reverse BWT(T) starting at right end of *T,* moving left **Start** in first row. *F* must have **\$**. L contains character prior: **a**₃ Jump to row beginning with **a**₃. L contains character just prior: **b**₁. Repeat for **b**₁, get **a**₂ Repeat for a2, get a1 Repeat for **a**₁, get **b**₀ Repeat for **b**₀, get **a**₀ Repeat for **a**₀, get **\$** (done) We visited (backwards) T's chars: