Burrows-Wheeler Transform, part 1

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Burrows-Wheeler Transform

Rotations of a string:

bonbon

N
onbonb

Burrows-Wheeler Transform

Rotations of a string:

bonbon

N
onbonb

T

nbonbo
bonbon
onbonb

nbonbo
(etc)

bonbon
onbonb
nbonbo
bonbon
onbonb
nbonbo

(not necessarily
distinct)

Burrows-Wheeler Transform

We know dictionary order:
as < ash and flower < flowers

For cases where no character "breaks the tie," i.e.
where one string is a prefix of the other

We could have said ash < as and
flowers < flower; still atotal order

Burrows-Wheeler Transform

Define new symbol $ ("terminator"), to be
alphabetically less than others:

bonbon$
Enforces dictionary order and:

bonbon% bonbon%

No suffix is a onbon$% No two $bonbon
prefix of nbon$ rotations are n$bonbo
another suffix: bon$ the same; on$bonb
on% bon$bon

n$ nbon$bo

$ onbon$b

Burrows-Wheeler Transform

abaabas$
T
W,
Ofc;f.
/0/7
S

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Sabaaba

aSabaab

aabas$ab

abaaba$ abaSaba abba$aa
T 4 abaabas$s BWT(T)
% baSabaa
Ong baaba sa Last column
Sort Burrows-Wheeler
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

abaabas$
T

Sabaaba
aSabaab
aabaSab
abaSaba >
abaabas$
baSabaa
baaba$a

BWT(T) orders T's characters according to
alphabetical order of right contexts in T

— 9 O WY O 0T Y

BWT

Sabaab
aSabaa
aaba$a
abasSab
abaaba
baSaba
baabas$
T
Right
contexts

Burrows-Wheeler Transform

final
char sorted rotations

(L)

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This secticn describes
transformation} Wwe use the example anc
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set SL[i]$ to be the

turn, set $R[i]$ to the

unusual data. Like the algorithm of Nan
nse a single set of probabilities table
using the positicns of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with $chs. In our exam
with Euffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

o

Ordered by right-context

(= Ji= R = R~ i

-~
L

Colors show what parts of
matrix are shown on right

O O F-F - O ® H ® % O F- - P O OO O

B8 B8 B8 B8B83 3B B8B83 B

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Compression strategy: Decompression strategy:
(a) Get BWT(T) (a) H, decode partitions
(b) Partition by k-context (b) Concatenate partitions
(c) H, encode partitions (c) Reverse BWT(T) to get T
/
TODO

Space: H, code for each partition

BWT is a "compression booster"

Burrows-Wheeler Transform Consider building a
H | compressor for

$mississippi H, mississippi
i$mississipp
ippi$mississ
issippi$miss
ississippi$m
mississippi$ H,
pifmississip

ppi$mississi B%
Ssippi$missis

Ssissippi$mis =
ssippi$missi 0

Sssissippi$mi

H(T) = (4/11) Hy(pssm) + (1/11) Hy(1)+
= (2/11) Hy(p1i) + (4/11) Hy(ssii)

Burrows-Wheeler Transform

$mississippi H,
i¢mississipp H,
ippi$mississ H
isisippi$miss
isisissippi$m
miississippi$ H,
plitmississip H,
ppii$mississi H,
sippi$missis
siissippi$mis
ssiippi$missi
ssiissippi$mi

H Overall: H,

Obtain H, code by applying H,, Or just take chunks of fixed #
code in each k-context chunk rows. Either way, order is key.

