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Say, code = rank + (13 * suit)

Where Ace = 0, Jack = 10, ...
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Say, code = rank + (13 * suit)

Where Ace = 0, Jack = 10, ...
 = 0, = 1, ...♠ ♥

Let's identify items with codes, made of bits

A
2
3
4

♠
♠
♠
♠

10
J
Q
K

♣
♣
♣
♣

...

110011
110010
110001
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Hwc(U) = log2 |U |

How many bits are required to encode items from 
universe ?U

If codes can have various lengths, longest code 
must be  ≥ log2( |U | )

If codes must have same length, length must be 
, best choice is ≥ log2( |U | ) ⌈log2( |U | )⌉

Entropy & coding



Entropy

How many bits required to identify an item from 
this set?

(37 or 38 slots)
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Entropy

How many bits required to identify an item from 
this set?

1 bit 3 bits 6 bits

(37 or 38 slots)
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Hwc(U) = log2 |U |

If , then|U | = 2n
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Entropy

This is worst-case entropy

Hwc(U) = log2 |U |

If , then |U | = 2n Hwc(U) =

If ,U = {length-n strings from Σ = {1, . . . , σ}}
then Hwc(U) = log2 σn = n log2 σ

n



Entropy

ℓ̄ = ∑
u∈U

Pr(u) ⋅ ℓ(u)

If codes can vary in length, 
we can use shorter codes 
for more frequent events

Seeking to minimize 
average (or expected) 
code length ℓ̄

 = length of code for ℓ(u) u



Entropy

Instead of items , let's think of a discrete r.v. 
 and its sample space  & probability function 

u ∈ U
X Ω Pr

H(X) = ∑
s ∈ Ω

Pr(s) ⋅ log2
1

Pr(s)

= − ∑
s ∈ Ω

Pr(s) ⋅ log2 Pr(s)



Entropy

Instead of items , let's think of a discrete r.v. 
 and its sample space  & probability function 

u ∈ U
X Ω Pr

H(X) = ∑
s ∈ Ω

Pr(s) ⋅ log2
1

Pr(s)

= − ∑
s ∈ Ω

Pr(s) ⋅ log2 Pr(s)

This is Shannon entropy



Entropy

H(X) = 0.5 ⋅ log2
1

0.5
+ 0.5 ⋅ log2

1
0.5

= 0.5 ⋅ 1 + 0.5 ⋅ 1

X ={ : 0.5, : 0.5

{
= 1
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Entropy

H(X) = 0.9 ⋅ log2
1

0.9
+ 0.1 ⋅ log2

1
0.1

= 0.9 ⋅ 0.15 + 0.1 ⋅ 3.32

X ={ : 0.9, : 0.1

{
= 0.47
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Entropy
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6

∑
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1
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log2 6

= log2 6 = 2.58
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Entropy

H(X) = ∑
s ∈ Ω

Pr(s) ⋅ log2
1

Pr(s)

= ∑
s ∈ Ω

1
|Ω |

⋅ log2 |Ω |

When outcomes are equally probable:

= log2 |Ω |



Entropy

H(X) = ∑
s ∈ ΩX

Pr(s) ⋅ log2
1

Pr(s)

= ∑
s ∈ ΩX

1
|ΩX |

⋅ log2 |ΩX |

When outcomes are equally probable:

Matching the definition of worst-case entropy

= log2 |ΩX |



Entropy

Shannon entropy  is a function of a 
random variable

H(X)

The r.v. models a data source; e.g. a person 
speaking, or letters of a DNA string

Assumes a memoryless source; each item is 
an i.i.d. draw



Entropy

So far we've seen

Worst-case entropy  is a function of a setHwc(U)

Shannon entropy , a function of a random 
variable

H(X)

When outcomes are equiprobable,  = H(X) Hwc(ΩX)



Entropy

Say we have a memoryless binary source and an 
example string  it emittedB

We can count B's 0s & 1s to "train" a model

H0(B) = H (X ∼ Bern( m
n ))

=
m
n

log2
n
m

+
n − m

n
log2

n
n − m

m =
n = |B |

# 1s in B
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Entropy

Say we have a memoryless binary source and an 
example string  it emittedB

We can count B's 0s & 1s to "train" a model

H0(B) = H (X ∼ Bern( m
n ))

=
m
n

log2
n
m

+
n − m

n
log2

n
n − m

m =
n = |B |

# 1s in B

 is the empirical zero order entropyH0



Entropy

So:

Empirical zero order entropy  of a 
sequence  is the Shannon entropy of a 
memoryless source "trained" to 

H0(B)
B

B

Worst-case entropy  is a function of a setHwc(U)

Shannon entropy , a function of a random 
variable

H(X)



Codes

A good code will:

Give unambiguous 
mappings for encoding 
& decoding

Allow efficient 
encoding & decoding

Minimize average code 
length (approach )H0



Codes

H(X) = ∑
s ∈ Ω

Pr(s) ⋅ log2
1

Pr(s)

Shannon entropy equation hints at codes of 

length log2
1

Pr(s)



Codes

Say we have a source emitting symbols from 
alphabet  Σ = {𝚊, 𝚌, 𝚐, 𝚝}

Source is memoryless,  modeled by r.v.:

X = { 𝚊 :
1
2

, 𝚌 :
1
4

, 𝚐 :
1
8

, 𝚝 :
1
8

}

 is a function mapping symbols to binary code 
sequences.  
C

C : Σ → {0,1} *

What kind of  do we want?C



Codes

Proposal 1

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU

a a g cC(𝚊) = 𝟶
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟷𝟷𝟶
C(𝚝) = 𝟷𝟷𝟷

Each codeword is 
unique; i.e.  is injectiveC

X = { 𝚊 :
1
2

, 𝚌 :
1
4

, 𝚐 :
1
8

, 𝚝 :
1
8

}

https://youtu.be/9MCxXJn7TPU
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Proposal 1

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU

a a g c

0 0 1 1 0 1 0

C(𝚊) = 𝟶
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟷𝟷𝟶
C(𝚝) = 𝟷𝟷𝟷

Each codeword is 
unique; i.e.  is injectiveC

X = { 𝚊 :
1
2

, 𝚌 :
1
4

, 𝚐 :
1
8

, 𝚝 :
1
8

}

https://youtu.be/9MCxXJn7TPU


Codes

Proposal 1

C(𝚊) = 𝟶
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟷𝟷𝟶
C(𝚝) = 𝟷𝟷𝟷 1 1 1 0 0 1 0

Can we go recover original string from code?

?

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Proposal 1

C(𝚊) = 𝟶
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟷𝟷𝟶
C(𝚝) = 𝟷𝟷𝟷 1 1 1 0 0 1 0

Can we go recover original string from code?

yes

t a a c

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Proposal 2

C(𝚊) = 𝟶
C(𝚌) = 𝟷
C(𝚐) = 𝟶𝟷
C(𝚝) = 𝟷𝟶

a a g c

Again,  is injectiveC

X = { 𝚊 :
1
2

, 𝚌 :
1
4

, 𝚐 :
1
8

, 𝚝 :
1
8

}

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Proposal 2

C(𝚊) = 𝟶
C(𝚌) = 𝟷
C(𝚐) = 𝟶𝟷
C(𝚝) = 𝟷𝟶

a a g c

0 0 0 1 1

Again,  is injectiveC

X = { 𝚊 :
1
2

, 𝚌 :
1
4

, 𝚐 :
1
8

, 𝚝 :
1
8

}

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Proposal 2

Can we go recover original string from code?

?

C(𝚊) = 𝟶
C(𝚌) = 𝟷
C(𝚐) = 𝟶𝟷
C(𝚝) = 𝟷𝟶 0 0 0 1 1

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Proposal 2

Can we go recover original string from code?

?

C(𝚊) = 𝟶
C(𝚌) = 𝟷
C(𝚐) = 𝟶𝟷
C(𝚝) = 𝟷𝟶 0 0 0 1 1

no

a a a c ?  
a a g ?

Example from Mathematicalmonk videos on info. theory https://youtu.be/9MCxXJn7TPU
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Codes

Let  be the code extended to sequences C′ 

C′ : Σ * → {0,1} *

C(𝚊) = 𝟶
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟷𝟷𝟶
C(𝚝) = 𝟷𝟷𝟷

C′ (𝚊) = 𝟶
C′ (𝚊𝚐) = 𝟶𝟷𝟷𝟶
C′ (𝚝𝚝) = 𝟷𝟷𝟷𝟷𝟷𝟷
C′ (𝚊𝚊𝚊𝚊𝚌) = 𝟶𝟶𝟶𝟶𝟷𝟶

 should be injective, giving unambiguous codeC′ 

(  being injective is not enough)C



Codes

Consider two codes, both unambiguous

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

A B

a a g c

1 1 0 0 1 0

a a g c

1 1 0 0 0 1



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0
Considering first 1, can't yet 
tell if it's an a or part of a c



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0
Now sure that first 1 is a.  
Not sure about second 1.



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0

Either we have

ac...
aag...



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0

Either we have

acg...
aag...



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0

Now we're sure we have:

aag...

But could still be aaga... 
or aagc...



Codes

Now we decode:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A 1 1 0 0 1 0

Now we're sure we have:

aagc



Codes

Consider an example with a longer run of 0s:

C(𝚊) = 𝟷
C(𝚌) = 𝟷𝟶
C(𝚐) = 𝟶𝟶

A

1 1 0 0 0 0 0 0 0 1 0

Can't distinguish a from c until we see 
whether run of 0s is odd or even

a?
c?

Since it's odd, must be a c:    acgggc



Codes

Now we decode:

1 1 0 0 0 1
Considering first 1, we're 
immediately sure it's an a

C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B



Codes

Now we decode:

1 1 0 0 0 1

Definitely aa
C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B



Codes

Now we decode:

1 1 0 0 0 1

Could be aac or aag
C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B



Codes

Now we decode:

1 1 0 0 0 1

Definitely aag
C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B



Codes

Now we decode:

1 1 0 0 0 1
C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B

Could be aagc or aagg



Codes

Now we decode:

1 1 0 0 0 1
C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B

Definitely aagc



Codes

C(𝚊) = 𝟷
C(𝚌) = 𝟶𝟷
C(𝚐) = 𝟶𝟶

B

1 0 1 0 0 0 0 0 0 1 0
c

No problems with decoding efficiency here.

Code is prefix-free; no code is a prefix of another.  
Also called a prefix code for short.

ggg

AKA instantaneous



Huffman

Say we start with a string:   abracadabra

{ 𝚊 : 5, 𝚋 : 2, 𝚌 : 1, 𝚍 : 1 𝚛 : 2}

Can compile symbols and their frequencies:



Huffman

{ 𝚊 : 5, 𝚋 : 2, 𝚌 : 1, 𝚍 : 1 𝚛 : 2}

a d r
5 2 1 1 2

In each round, join the 2 subtrees with lowest total weight

b c



Huffman

{ 𝚊 : 5, 𝚋 : 2, 𝚌 : 1, 𝚍 : 1 𝚛 : 2}

a d r
5 2 1 1 2

In each round, join the 2 subtrees with lowest total weight

2

b c

Weight of new subtree 
is sum of children



Huffman

a d r
5 2 1 1 2

2

4

b c



Huffman

a d
5 2 1 1 2

2

b c

4

r

6



Huffman

a d
5 2 1 1 2

2

b c

4

r

6

11

This is the tree but what is the code?



Huffman

a d
5 2 1 1 2

2

b c

4

r

6

11

0

1

0 1

0
1

0 1

C(𝚊) = 𝟶
C(𝚋) = 𝟷𝟶𝟶
C(𝚌) = 𝟷𝟶𝟷𝟶
C(𝚍) = 𝟷𝟶𝟷𝟷
C(𝚛) = 𝟷𝟷

Label edges with 0/1 according to left/right child of parent

Codes equal root-to-leaf concatenations of 0/1's



Huffman

In other words, for an input string :S

Huffman codes are “optimal" in that each code is 
at most 1 bit longer then optimal

|C′ (S) | ≤ |S | (H0(S) + 1)



Huffman

In other words, for an input string :S

Huffman codes are “optimal" in that each code is 
at most 1 bit longer then optimal

|C′ (S) | ≤ |S | (H0(S) + 1)


