Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Let's identify items with *codes*, made of bits

Let's identify items with *codes*, made of bits

Say, code = rank + (13 * suit)

Where Ace = 0, Jack = 10, ...

Let's identify items with *codes*, made of bits

Let's identify items with *codes*, made of bits

How many bits are required to encode items from universe U?

$$H_{wc}(U) = \log_2 |U|$$

If codes must have *same* length, length must be $\ge \log_2(|U|)$, best choice is $\lceil \log_2(|U|) \rceil$

If codes can have *various* lengths, *longest* code must be $\geq \log_2(|U|)$

How many bits required to identify an item from this set?

https://commons.wikimedia.org/wiki/File:13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg

How many bits required to identify an item from this set?

https://commons.wikimedia.org/wiki/File:13-02-27-spielbank-wiesbaden-by-RalfR-094.jpg

 $H_{wc}(U) = \log_2 |U|$

This is **worst-case entropy**

If $|U| = 2^n$, then

$H_{wc}(U) = \log_2 |U|$

This is **worst-case entropy**

If
$$|U| = 2^n$$
, then $H_{wc}(U) = n$

$$H_{wc}(U) = \log_2 |U|$$

This is **worst-case entropy**

If
$$|U| = 2^n$$
, then $H_{wc}(U) = n$

If $U = \{ \text{length-}n \text{ strings from } \Sigma = \{1, \ldots, \sigma\} \},$ then

$$H_{wc}(U) = \log_2 |U|$$

This is **worst-case entropy**

If
$$|U| = 2^n$$
, then $H_{wc}(U) = n$

If $U = \{\text{length-}n \text{ strings from } \Sigma = \{1, \dots, \sigma\}\},\$ then $H_{wc}(U) = \log_2 \sigma^n = n \log_2 \sigma$

If codes can vary in length, we can use shorter codes for more frequent events

Seeking to minimize average (or *expected*) code length $\overline{\ell}$

$$\bar{\mathcal{\ell}} = \sum_{u \in U} \Pr(u) \cdot \mathcal{\ell}(u)$$

 $\ell(u) =$ length of code for u

International Morse Code

Instead of items $u \in U$, let's think of a discrete r.v. X and its sample space Ω & probability function Pr

$$H(X) = \sum_{s \in \Omega} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$

Instead of items $u \in U$, let's think of a discrete r.v. X and its sample space Ω & probability function Pr

$$H(X) = \sum_{s \in \Omega} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$
$$= -\sum_{s \in \Omega} \Pr(s) \cdot \log_2 \Pr(s)$$

This is *Shannon entropy*

H(X) =

H(X) =

р

р

р

H(X) =

$$H(X) = \sum_{i=1}^{6} \frac{1}{6} \log_2 6$$
$$= \log_2 6 = 2.58$$

When outcomes are equally probable:

When outcomes are equally probable:

$$H(X) = \sum_{s \in \Omega_X} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$
$$= \sum_{s \in \Omega_X} \frac{1}{|\Omega_X|} \cdot \log_2 |\Omega_X|$$
$$= \log_2 |\Omega_X|$$

Matching the definition of worst-case entropy

Shannon entropy H(X) is a function of a random variable

The r.v. models a data *source*; e.g. a person speaking, or letters of a DNA string

Assumes a *memoryless* source; each item is an i.i.d. draw

So far we've seen

Worst-case entropy $H_{wc}(U)$ is a function of a **set**

Shannon entropy H(X), a function of a **random variable**

When outcomes are equiprobable, $H(X) = H_{wc}(\Omega_X)$

 $H_0(B) =$

Say we have a memoryless binary source and an *example string B* it emitted

We can count B's 0s & 1s to "train" a model

Say we have a memoryless binary source and an *example string B* it emitted

We can count B's 0s & 1s to "train" a model

$$H_0(B) = H\left(X \sim \text{Bern}\left(\frac{m}{n}\right)\right)$$
 $m = \# 1 \sin B$
 $n = |B|$

Say we have a memoryless binary source and an *example string B* it emitted

We can count B's 0s & 1s to "train" a model

$$H_0(B) = H\left(X \sim \text{Bern}\left(\frac{m}{n}\right)\right) \qquad \begin{array}{l} m = \# \, 1 \, \text{s in } B \\ n = \|B\| \\ = \frac{m}{n} \log_2 \frac{n}{m} + \frac{n - m}{n} \log_2 \frac{n}{n - m} \end{array}$$

H₀ is the *empirical zero order entropy*

So:

Worst-case entropy $H_{wc}(U)$ is a function of a **set**

Shannon entropy H(X), a function of a **random variable**

Empirical zero order entropy $H_0(B)$ of a **sequence** B is the Shannon entropy of a memoryless source "trained" to B

Codes

A good code will:

Minimize average code length (approach H_0)

Give *unambiguous* mappings for encoding & decoding

Allow efficient encoding & decoding

International Morse Code

$$H(X) = \sum_{s \in \Omega} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$

Shannon entropy equation hints at codes of length $log_2 \frac{1}{Pr(s)}$

Say we have a source emitting **symbols** from **alphabet** $\Sigma = \{a, c, g, t\}$

Source is *memoryless*, modeled by r.v.:

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

C is a function mapping symbols to binary code sequences. $C: \Sigma \rightarrow \{0,1\}^*$

What kind of *C* do we want?

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

$$\frac{\text{Proposal 1}}{C(a) = 0}$$

$$C(c) = 10$$

$$C(g) = 110$$

$$C(t) = 111$$

Each codeword is unique; i.e. *C* is injective

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

$$\frac{\text{Proposal 1}}{C(a) = 0}$$

$$C(c) = 10$$

$$C(g) = 110$$

$$C(t) = 111$$

$$0 = 10 = 0$$

Each codeword is unique; i.e. *C* is injective

Can we go recover original string from code?

Proposal 1

$$C(a) = 0$$

$$C(c) = 10$$

$$C(g) = 110$$

$$C(t) = 111$$

$$110010$$

Can we go recover original string from code?

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

$$\frac{\text{Proposal 2}}{C(a) = 0}$$

$$C(c) = 1$$

$$C(g) = 01$$

$$C(t) = 10$$

Again, C is injective

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

$$\frac{\text{Proposal 2}}{C(a) = 0}$$

$$C(c) = 1$$

$$C(g) = 01$$

$$C(t) = 10$$

$$O(0) = 1$$

Again, C is injective

Can we go recover original string from code?

Proposal 2

$$C(a) = 0$$

$$C(c) = 1$$

$$C(g) = 01$$

$$C(t) = 10$$

$$00011$$

Can we go recover original string from code?

Proposal 2

Let C' be the code extended to sequences $C': \Sigma^* \to \{0,1\}^*$

$$C(a) = 0$$
 $C'(a) = 0$ $C(c) = 10$ $C'(ag) = 0110$ $C(g) = 110$ $C'(tt) = 111111$ $C(t) = 111$ $C'(aaaac) = 000010$

C' should be injective, giving *unambiguous* code

(*C* being injective is not enough)

Consider two codes, both unambiguous

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

10010

Considering first 1, can't yet tell if it's an a or part of a c

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

110010

Now sure that first 1 is a. Not sure about second 1.

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

110010

Either we have

- ac...
- aag...

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

110010

Either we have

- acg...
- aag...

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

110010

Now we're sure we have:

But could still be aaga... or aagc...

Now we decode:

A
$$C(a) = 1$$

 $C(c) = 10$
 $C(g) = 00$

110010

Now we're sure we have: aagc

Consider an example with a longer run of 0s:

Can't distinguish a from c until we see whether run of 0s is odd or even

Since it's odd, must be a c: acgggc

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

10001

Considering first 1, we're immediately sure it's an a

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

110001

Definitely aa

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

110001

Could be aac or aag

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

110001

Definitely aag

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

110001

Could be aagc or aagg

Now we decode:

$$B$$
$$C(a) = 1$$
$$C(c) = 01$$
$$C(g) = 00$$

110001

Definitely aagc

No problems with decoding efficiency here.

Code is **prefix-free**; no code is a prefix of another. Also called a **prefix code** for short.

AKA *instantaneous*

Say we start with a string: abracadabra

Can compile symbols and their frequencies:

{ a:5, b:2, c:1, d:1 r:2}

{ a:5, b:2, c:1, d:1 r:2}

In each round, join the 2 subtrees with lowest total weight

{ a:5, b:2, c:1, d:1 r:2}

In each round, join the 2 subtrees with lowest total weight

This is the tree but what is the code?

Label edges with 0/1 according to left/right child of parent Codes equal root-to-leaf concatenations of 0/1's

Huffman codes are "optimal" in that each code is at most 1 bit longer then optimal

In other words, for an input string S:

 $|C'(S)| \leq$

Huffman codes are "optimal" in that each code is at most 1 bit longer then optimal

In other words, for an input string S:

 $|C'(S)| \le |S|(H_0(S) + 1)$