Entropy \& coding

Ben Langmead

WHITING SCHOOL of ENGINEERING
Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Entropy \& coding

Let's identify items with codes, made of bits

4	4 4 4	1 4 \dagger ψ	¢ 4.4 $*$	$\begin{array}{cc}54 & 4 \\ 4 \\ *\end{array}$		¢ ¢ ¢ 1	$\begin{array}{cc} 14 & 4 \\ 4 & * \\ 4 & 6 \end{array}$						
v	\% $\%$ \%	14 9 4	iv \%			4 4 H1	$\begin{array}{ccc}1 \% & \% \\ \% & \% \\ \Delta & \Delta t\end{array}$	$\psi_{\omega^{*}}^{\omega} v^{v}$			1		
+	+ $+i$	+ + +	+ + +6	it + + +4		+ +1	+4 +4 $+*!$					$\frac{6}{6}$	
8	4 $*$ $*$	4 4 ψ	i 4 ¢ + $4 *$	54 4 +4		+ + $+!$	$\begin{aligned} & 14 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\%$					

Entropy \& coding

Let's identify items with codes, made of bits

$\stackrel{4}{4}$	4 4 4	1 \dagger \dagger \dagger	¢ 4. - $4 *$	5 4 	¢ \dagger \dagger \dagger ψ \dagger 1		${ }^{+}{ }^{4}+{ }_{*}^{+}$	$\begin{aligned} & 14 \\ & 6 \\ & \phi_{4}^{*} \\ & \phi_{4}^{*} \end{aligned}$				
*	4 4		$\begin{array}{cc}\text { (\%) } \\ \text { a } & 4\end{array}$	$\begin{array}{cc}* & V \\ \nu & \nu \\ 4 & A!\end{array}$	$\begin{array}{ccc}54 & 4 \\ 9 & 4 \\ 4 & \text { H1 }\end{array}$						1	
\%	+	$\stackrel{+}{*}$	+ +	it + + +4	$\begin{array}{ll}++ & + \\ + & + \\ + & 41\end{array}$	$+4+$ $4+$ $+\quad+1$	$+_{4}^{+4}+$		$+{ }_{+}^{+}$			
4	\% 4	$1+$ ψ ψ ψ	$4 * *$ $+4 *$	i4 4 4 4	64 4 4 4	$\begin{array}{ll} 14 & 4 \\ 4 & 4 \\ 4 & 4 \\ 4 & 6 \end{array}$			$4{ }^{7}$			

Say, code $=$ rank $+\left(13^{*}\right.$ suit $)$
Where Ace = 0, Jack = 10, ...

$$
\Phi=0, P=1, \ldots
$$

Entropy \& coding

Let's identify items with codes, made of bits

Say, code $=$ rank $+(13$ * suit $)$
Where Ace $=0$, Jack $=10, \ldots$

$$
\phi=0, \nu=1, \ldots
$$

https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck_PLUS.svg

Entropy \& coding

Let's identify items with codes, made of bits

Say, code $=$ rank $+(13$ * suit $)$
Where Ace $=0$, Jack $=10, \ldots$

$$
\Delta=0, \Gamma=1, \ldots
$$

https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck_PLUS.svg

Entropy \& coding

How many bits are required to encode items from universe U ?

$$
H_{w c}(U)=\log _{2}|U|
$$

If codes must have same length, length must be $\geq \log _{2}(|U|)$, best choice is $\left\lceil\log _{2}(|U|)\right\rceil$

If codes can have various lengths, longest code must be $\geq \log _{2}(|U|)$

Entropy

How many bits required to identify an item from this set?

Entropy

How many bits required to identify an item from this set?

Entropy

$$
H_{w c}(U)=\log _{2}|U|
$$

This is worst-case entropy

$$
\text { If }|U|=2^{n} \text {, then }
$$

Entropy

$$
H_{w c}(U)=\log _{2}|U|
$$

This is worst-case entropy

$$
\text { If }|U|=2^{n} \text {, then } H_{w c}(U)=n
$$

Entropy

$$
H_{w c}(U)=\log _{2}|U|
$$

This is worst-case entropy

$$
\begin{aligned}
& \text { If }|U|=2^{n} \text {, then } H_{w c}(U)=n \\
& \text { If } U=\{\text { length- } n \text { strings from } \Sigma=\{1, \ldots, \sigma\}\}, \\
& \text { then }
\end{aligned}
$$

Entropy

$$
H_{w c}(U)=\log _{2}|U|
$$

This is worst-case entropy

$$
\text { If }|U|=2^{n} \text {, then } H_{w c}(U)=n
$$

If $U=\{$ length $-n$ strings from $\Sigma=\{1, \ldots, \sigma\}\}$, then $H_{w c}(U)=\log _{2} \sigma^{n}=n \log _{2} \sigma$

Entropy

If codes can vary in length, we can use shorter codes for more frequent events

Seeking to minimize average (or expected) code length $\bar{\ell}$

$$
\bar{\ell}=\sum_{u \in U} \operatorname{Pr}(u) \cdot \ell(u)
$$

$\ell(u)=$ length of code for u

International Morse Code

$\begin{array}{ll}1 \\ 2 & \square \\ 3 & \square \\ 4 & \square \\ 6 & \square \\ 7 & \square \\ 9 & \square \\ 9 & \square\end{array}$

Entropy

Instead of items $u \in U$, let's think of a discrete r.v. X and its sample space Ω \& probability function Pr

$$
H(X)=\sum_{s \in \Omega} \operatorname{Pr}(s) \cdot \log _{2} \frac{1}{\operatorname{Pr}(s)}
$$

Entropy

Instead of items $u \in U$, let's think of a discrete r.v. X and its sample space Ω \& probability function Pr

$$
\begin{aligned}
H(X) & =\sum_{s \in \Omega} \operatorname{Pr}(s) \cdot \log _{2} \frac{1}{\operatorname{Pr}(s)} \\
& =-\sum_{s \in \Omega} \operatorname{Pr}(s) \cdot \log _{2} \operatorname{Pr}(s)
\end{aligned}
$$

This is Shannon entropy

Entropy

$$
X=\{: 0.5,: 0.5\}
$$

$H(X)=$

Entropy

$$
\begin{aligned}
X & =\{: 0.5,: 0.5\} \\
H(X) & =0.5 \cdot \log _{2} \frac{1}{0.5}+0.5 \cdot \log _{2} \frac{1}{0.5} \\
& =0.5 \cdot 1+0.5 \cdot 1 \\
& =1
\end{aligned}
$$

Entropy

$$
X=\{\because: 0.9,=0.1\}
$$

$H(X)=$

Entropy

$$
\begin{aligned}
X & =\{: 0.9,: 0.1\} \\
H(X) & =0.9 \cdot \log _{2} \frac{1}{0.9}+0.1 \cdot \log _{2} \frac{1}{0.1} \\
& =0.9 \cdot 0.15+0.1 \cdot 3.32 \\
& =0.47
\end{aligned}
$$

Entropy

$$
X=\{\because p,: 1-p\}
$$

Entropy

$$
X=\{\because p,: 1-p\}
$$

Entropy

$$
X=\{\because: p,: 1-p\}
$$

Entropy

$$
X=\{: p,: 1-p\}
$$

Entropy

$$
x=\left\{\oplus \cdot \mathscr{A}: B: B: \frac{1}{6} \text { each }\right\}
$$

$H(X)=$

Entropy

$$
\begin{aligned}
& H(X)=\sum_{i=1}^{6} \frac{1}{6} \log _{2} 6 \\
& =\log _{2} 6=2.58
\end{aligned}
$$

Entropy

Entropy

Entropy

When outcomes are equally probable:

$$
H(X)=
$$

Entropy

When outcomes are equally probable:

$$
\begin{aligned}
H(X) & =\sum_{s \in \Omega_{X}} \operatorname{Pr}(s) \cdot \log _{2} \frac{1}{\operatorname{Pr}(s)} \\
& =\sum_{s \in \Omega_{X}} \frac{1}{\left|\Omega_{X}\right|} \cdot \log _{2}\left|\Omega_{X}\right| \\
& =\log _{2}\left|\Omega_{X}\right|
\end{aligned}
$$

Matching the definition of worst-case entropy

Entropy

Shannon entropy $H(X)$ is a function of a random variable

The r.v. models a data source; e.g. a person speaking, or letters of a DNA string

Assumes a memoryless source; each item is an i.i.d. draw

Entropy

So far we've seen

Worst-case entropy $H_{w c}(U)$ is a function of a set
Shannon entropy $H(X)$, a function of a random variable

When outcomes are equiprobable, $H(X)=H_{w c}\left(\Omega_{X}\right)$

Entropy

Say we have a memoryless binary source and an example string B it emitted

We can count B's $0 \mathrm{~s} \& 1 \mathrm{~s}$ to "train" a model

$$
H_{0}(B)=
$$

$$
\begin{aligned}
m & =\# 1 \mathrm{~s} \text { in } B \\
n & =|B|
\end{aligned}
$$

Entropy

Say we have a memoryless binary source and an example string B it emitted

We can count B's $0 \mathrm{~s} \& 1 \mathrm{~s}$ to "train" a model

$$
H_{0}(B)=H\left(X \sim \operatorname{Bern}\left(\frac{m}{n}\right)\right) \quad \begin{aligned}
m & =\# 1 \mathrm{~s} \text { in } B \\
n & =|B|
\end{aligned}
$$

Entropy

Say we have a memoryless binary source and an example string B it emitted

We can count B's $0 \mathrm{~s} \& 1 \mathrm{~s}$ to "train" a model

$$
\begin{aligned}
& H_{0}(B)=H\left(X \sim \operatorname{Bern}\left(\frac{m}{n}\right)\right) \quad \begin{aligned}
m & =\# 1 \mathrm{~s} \text { in } B \\
n & =|B|
\end{aligned} \\
& =\frac{m}{n} \log _{2} \frac{n}{m}+\frac{n-m}{n} \log _{2} \frac{n}{n-m}
\end{aligned}
$$

H_{0} is the empirical zero order entropy

Entropy

So:
Worst-case entropy $H_{w c}(U)$ is a function of a set
Shannon entropy $H(X)$, a function of a random variable

Empirical zero order entropy $H_{0}(B)$ of a sequence B is the Shannon entropy of a memoryless source "trained" to B

Codes

A good code will:

Minimize average code length (approach H_{0})

Give unambiguous mappings for encoding \& decoding

Allow efficient
encoding \& decoding

International Morse Code

Codes

$$
H(X)=\sum_{s \in \Omega} \operatorname{Pr}(s) \cdot \log _{2} \frac{1}{\operatorname{Pr}(s)}
$$

Shannon entropy equation hints at codes of length $\log _{2} \frac{1}{\operatorname{Pr}(s)}$

Codes

Say we have a source emitting symbols from alphabet $\Sigma=\{\mathrm{a}, \mathrm{c}, \mathrm{g}, \mathrm{t}\}$

Source is memoryless, modeled by r.v.:

$$
X=\left\{a: \frac{1}{2}, c: \frac{1}{4}, g: \frac{1}{8}, \mathrm{t}: \frac{1}{8}\right\}
$$

C is a function mapping symbols to binary code sequences. $C: \Sigma \rightarrow\{0,1\}^{*}$

What kind of C do we want?

Codes

$$
X=\left\{\mathrm{a}: \frac{1}{2}, \mathrm{c}: \frac{1}{4}, \mathrm{~g}: \frac{1}{8}, \mathrm{t}: \frac{1}{8}\right\}
$$

Proposal 1

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=110 \\
& C(\mathrm{t})=111
\end{aligned}
$$

a ag c

Each codeword is
unique; i.e. C is injective

Codes

$$
X=\left\{\mathrm{a}: \frac{1}{2}, \mathrm{c}: \frac{1}{4}, \mathrm{~g}: \frac{1}{8}, \mathrm{t}: \frac{1}{8}\right\}
$$

Proposal 1

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=110 \\
& C(\mathrm{t})=111
\end{aligned}
$$

a a g c

 0011010

Each codeword is
unique; i.e. C is injective

Codes

Can we go recover original string from code?

Proposal 1

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=110 \\
& C(\mathrm{t})=111
\end{aligned}
$$

1110010

Codes

Can we go recover original string from code?

Proposal 1

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=110 \\
& C(\mathrm{t})=111
\end{aligned}
$$

Codes

$$
X=\left\{\mathrm{a}: \frac{1}{2}, \mathrm{c}: \frac{1}{4}, \mathrm{~g}: \frac{1}{8}, \mathrm{t}: \frac{1}{8}\right\}
$$

Proposal 2

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=1 \\
& C(\mathrm{~g})=01 \\
& C(\mathrm{t})=10
\end{aligned}
$$

a ag c

Again, C is injective

Codes

$$
X=\left\{\mathrm{a}: \frac{1}{2}, \mathrm{c}: \frac{1}{4}, \mathrm{~g}: \frac{1}{8}, \mathrm{t}: \frac{1}{8}\right\}
$$

Proposal 2

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=1 \\
& C(\mathrm{~g})=01 \\
& C(\mathrm{t})=10
\end{aligned}
$$

a ag c

 00011

Again, C is injective

Codes

Can we go recover original string from code?

Proposal 2

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=1 \\
& C(\mathrm{~g})=01 \\
& C(\mathrm{t})=10
\end{aligned}
$$

00011

Codes

Can we go recover original string from code?

Proposal 2

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{c})=1 \\
& C(\mathrm{~g})=01 \\
& C(\mathrm{t})=10
\end{aligned}
$$

Codes

Let C^{\prime} be the code extended to sequences
$C^{\prime}: \Sigma^{*} \rightarrow\{0,1\}^{*}$

$$
\begin{array}{ll}
C(\mathrm{a})=0 & C^{\prime}(\mathrm{a})=0 \\
C(\mathrm{c})=10 & C^{\prime}(\mathrm{ag})=0110 \\
C(\mathrm{~g})=110 & C^{\prime}(\mathrm{tt})=111111 \\
C(\mathrm{t})=111 & C^{\prime}(\text { aaaac })=000010
\end{array}
$$

C^{\prime} should be injective, giving unambiguous code (C being injective is not enough)

Codes

Consider two codes, both unambiguous

\[

\]

Codes

Now we decode:

$$
\begin{gathered}
\mathbf{A} \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=10 \\
C(\mathrm{~g})=00
\end{gathered}
$$

Codes

Now we decode:

$$
\begin{aligned}
& \mathbf{A} \\
& C(\mathrm{a})=1 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=00
\end{aligned}
$$

110010

Now sure that first 1 is a. Not sure about second 1 .

Codes

Now we decode:

$$
\begin{aligned}
& \mathbf{A} \\
& C(\mathrm{a})=1 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=00
\end{aligned}
$$

110010

Either we have ac...
aag. .

Codes

Now we decode:

$$
\begin{aligned}
& \mathbf{A} \\
& C(\mathrm{a})=1 \\
& C(\mathrm{c})=10 \\
& C(\mathrm{~g})=00
\end{aligned}
$$

110010
Either we have acg. .
aag. .

Codes

Now we decode:

$$
\begin{gathered}
\mathbf{A} \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=10 \\
C(\mathrm{~g})=00
\end{gathered}
$$

110010

Now we're sure we have:
aag...
But could still be aaga. . . or aagc...

Codes

Now we decode:

$$
\begin{gathered}
\mathbf{A} \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=10 \\
C(\mathrm{~g})=00
\end{gathered}
$$

110010
Now we're sure we have:
aagc

Codes

Consider an example with a longer run of 0 s :

Can't distinguish a from c until we see whether run of 0 s is odd or even

Since it's odd, must be a c: acgggc

Codes

Now we decode:

$$
\begin{gathered}
\text { B } \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=01 \\
C(\mathrm{~g})=00
\end{gathered}
$$

110001

Considering first 1, we're immediately sure it's an a

Codes

Now we decode:

\[

\]

Codes

Now we decode:

$$
\begin{gathered}
\mathrm{B} \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=01 \\
C(\mathrm{~g})=00
\end{gathered}
$$

110001

Could be aac or aag

Codes

Now we decode:

\[

\]

Codes

Now we decode:

$$
\begin{gathered}
\text { B } \\
C(\mathrm{a})=1 \\
C(\mathrm{c})=01 \\
C(\mathrm{~g})=00
\end{gathered}
$$

110001

Could be aagc or aagg

Codes

Now we decode:

\[

\]

Codes

No problems with decoding efficiency here.

Code is prefix-free; no code is a prefix of another. Also called a prefix code for short.

AKA instantaneous

Huffman

Say we start with a string: abracadabra

Can compile symbols and their frequencies:

$$
\{\mathrm{a}: 5, \mathrm{~b}: 2, \mathrm{c}: 1, \mathrm{~d}: 1 \mathrm{r}: 2\}
$$

Huffman

$$
\{\mathrm{a}: 5, \mathrm{~b}: 2, \mathrm{c}: 1, \mathrm{~d}: 1 \mathrm{r}: 2\}
$$

In each round, join the 2 subtrees with lowest total weight

Huffman

$$
\{\mathrm{a}: 5, \mathrm{~b}: 2, \mathrm{c}: 1, \mathrm{~d}: 1 \mathrm{r}: 2\}
$$

In each round, join the 2 subtrees with lowest total weight

Weight of new subtree is sum of children

Huffman

Huffman

Huffman

This is the tree but what is the code?

Huffman

$$
\begin{aligned}
& C(\mathrm{a})=0 \\
& C(\mathrm{~b})=100 \\
& C(\mathrm{c})=1010 \\
& C(\mathrm{~d})=1011 \\
& C(\mathrm{r})=11
\end{aligned}
$$

Label edges with $0 / 1$ according to left/right child of parent
Codes equal root-to-leaf concatenations of $0 / 1$'s

Huffman

Huffman codes are "optimal" in that each code is at most 1 bit longer then optimal

In other words, for an input string S :

$$
\left|C^{\prime}(S)\right| \leq
$$

Huffman

Huffman codes are "optimal" in that each code is at most 1 bit longer then optimal

In other words, for an input string S :

$$
\left|C^{\prime}(S)\right| \leq|S|\left(H_{0}(S)+1\right)
$$

