
Intro: Indexing
Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
to tell me briefly how you are using the slides. For original Keynote
files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Indexing

Imagine we have recorded the
ages of many people; say, voters:

1 78
2 19
3 20
4 50

500,000 54
500,001 50
500,002 19
500,003 77

999,997 40
999,998 27
999,999 71

1,000,000 44

...
...

How many voters are aged 27?

Order to the rescue

Index Age

Example modeled on: Prezza, Nicola. Compressed Computation for Text Indexing.
Diss. PhD thesis, University of Udine, 2016.

To find out, we have no choice
but to scan 1M recordsn =

Indexing

Suppose our list is age-ordered
17 18
33 18
39 18
60 18

999,905 49
999,985 49

4 50
18 50

999,649 101
999,811 101
433,034 103
377,003 104

...
...

How many voters are aged 27?

Binary search

More specifically?

2 searches, one for the first
age-27 person, one for last

Indexing

Simply ordering the data allows
us to query it more efficiently

17 18
33 18
39 18
60 18

999,905 49
999,985 49

4 50
18 50

999,649 101
999,811 101
433,034 103
377,003 104

...
...

From -item scan to two
 binary searches
n

log2 n

Did it also improve our ability
to compress the age data?

Yes; we now have "runs" of
same value, monotonicity, etc

Indexing

Grouping Ordering

Indexing

We are working with a text. We want to know if some
word occurs. The text is big but an excerpt is:

o r d e r i s g o o d... ...

Ordering words alphabetically: good < is < order

Indexing

good
goodwill

golf
good

...

good...

is
island

irritated
is

...
...

order
ordered

ordain
order

...
...

is

order

...

Can we still use binary search?

Yes, but what’s the cost of
comparing 2 words?

Several character
comparisons needed to get
relative order of dinosaur
& dinosaurs

Again, we've improved
queryability & compressibility

Indexing

Texts might not consist of words

Queries only on words is limiting

Word matches might not be the right query

e.g. DNA

e.g. autocomplete

What if we'd like to be able to query any substring?

e.g. inexact matching

Indexing

o r d e r _ i s _ g o o d... ...

Use underscore (_) for space, assume it comes first
alphabetically

Put all suffixes in order...

Indexing

_good...
_is_good...
d...
der_is_good...
er_is_good...
good...
is_good...
od...
ood...
order_is_good...
r_is_good...
rder_is_good...
s_good...

(This is just the relative order of
the order_is_good suffixes)

Can we use binary search?

Yes; still might need several
character comparisons to
get relative order of suffixes

Motivating questions

How do we measure the amount of redundant
information in a string?

How can orderings "reveal" structure and make
strings compressible?

How do we represent strings so that redundant
information takes minimal space?

How can ordering make strings fast to search,
faster than binary search?

Burrows-Wheeler Transform

David
Wheeler

Michael
Burrows

Burrows-Wheeler Transform

"FM Index"

Burrows-Wheeler Transform

Reveal structure by turning string “inside out”

https://commons.wikimedia.org/wiki/File:Image-2D_and_3D_modulor_Origami.jpg

https://commons.wikimedia.org/wiki/File:Image-2D_and_3D_modulor_Origami.jpg

