Intro: Indexing

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Indexing

Imagine we have recorded the

ages of many people; say, voters:

How many voters are aged 277

To find out, we have no choice
but to scan n = 1M records

Order to the rescue

Index Age

1 /8

2 19

3 20

4 50
500,000 54
500,001 50
500,002 19
500,003 /7
999,997 40
999,998 27
999,999 /1
1,000,000 44

Example modeled on: Prezza, Nicola. Compressed Computation for Text Indexing.

Diss. PhD thesis, University of Udine, 2016.

Indexing

17 18
33 18
39 18
60 18
999,905 49
999,985 49
4 50
18 50
999,649 101
999,811 101
433,034 103
377,003 104

Suppose our list is age-ordered

How many voters are aged 277

Binary search
More specifically?

2 searches, one for the first
age-27 person, one for last

Indexing

17 18
33 18
39 18
60 18
999,905 49
999,985 49
4 50
18 50
999,649 101
999,811 101
433,034 103
377,003 104

Simply ordering the data allows
us to query it more efficiently

From n-item scan to two
log, n binary searches

Did it also improve our ability
to compress the age data?

Yes: we now have "runs" of
same value, monotonicity, etc

Indexing

Grouping

nest ite hunting, 482-F7
honerpot anes, v Mysnecogte:
hormones. 106-5
soe o exve e plaods

howise (nest sive) hariing, A82-92

Hymenoprera (general), xvi
haplodipleid sex determinaticn, 20-22

Hypatoners (aney), 19%, 252, 324, 338

indusive fitness, 20-23, 25-<2
information measurement, 251-52

Murcraermsy (rermies). 5960

male roeagn tlon, 288
s commmunication, 62-63, 214-18

macinz, rmaltpie, 155

maze ol owing, 1174

Megalamyvmex (@), €57

Megipanen: (arts), see Fecbyconayla

Melspoma (stingless bees), 129

Meinphwns (anes), replotes, 257

memory, 117-19, 213

Messor (harvester anes), 212, 232

mind, 117-1%

Moneraorinm, 127, 212, 214, 216-17,
292

mocar displays, 23547

mound-bui ding anzs. 2

mu.tilevel sleczion, 7.7 13,24 29

musilagon. rivual. 366-73

micoalisi, tee symbiuses, ancs

Ay (fossil anes), 318

LS i

Ordering

Indexing

We are working with a text. We want to know if some
word occurs. The text is big but an excerpt is:

Ordering words alphabetically: good < is < order

Indexing

gc.>If

good

géod

goodwill

irritated

IS

IS

island

ordain

order

order

ordered

good

IS

order

Can we still use binary search?

Yes, but what's the cost of
comparing 2 words?

Several character
comparisons needed to get
relative order of dinosaur
& dinosaurs

Again, we've improved
gueryability & compressibility

Indexing

Queries only on words is limiting
Texts might not consist of words e.g. DNA

Word matches might not be the right query

e.g. autocomplete

e.g. inexact matching

What if we'd like to be able to query any substring?

Indexing

o/rid|le|r 1S glo|o|d

Use underscore (_) for space, assume it comes first
alphabetically

Put all suffixes in order...

Indexing

_good. .. (This is just the relative order of

“is good... the order_is_good suffixes)

d...

der 1is good...

er_is good... Can we use binary search?
good. ..

is_good... Yes; still might need several
od... character comparisons to
ood. .. get relative order of suffixes
order_1s good...

r_1s good...

rder _1is good...

s _good...

Motivating questions

How do we measure the amount of redundant
information in a string?

How do we represent strings so that redundant
information takes minimal space?

How can orderings "reveal" structure and make
strings compressible?

How can ordering make strings fast to search,
faster than binary search?

Burrows-Wheeler Transform

David
Wheeler SRC 2o 124

[]
Michael
Burrows A Blocksorting Lossless

M. Burrows and D.J. Wheeler

Briefly, our algorithm transforms a string S of N characters by forming the N
rotations (cyclic shifts) of §, sorting them lexicographically, and extracting the last
character of each of the rotations. A string L is formed from these characters, where
the ith character of L is the last character of the ith sorted rotation. In addition to
L, the algorithm computes the index I of the original string S in the sorted list of
rotations. Surprisingly, there is an efficient algorithm to compute the original string
S given only L and 1.

The sorting operation brings together rotations with the same initial characters.
Since the initial characters of the rotations are adjacent to the final characters,
consecutive characters in L are adjacent to similar strings in S. If the context of a
character is a good predictor for the character, L will be easy to compress with a
simple locally-adaptive compression algorithm.

Burrows-Wheeler Transform

Opportunistic Data Structures with Applications

Paolo Ferragina* Giovanni Manzini'
Universita di Pisa Universita del Piemonte Orientale
"FM Index"
Abstract

In this paper we address the issue of compressing and
indexing data. We devise a data structure whose space oc-
cupancy is a function of the entropy of the underlying data
set. We call the data structure opportunistic since its space
occupancy is decreased when the input is compressible and
this space reduction is achieved at no significant slowdown
in the query performance. More precisely, its space occu-
pancy is optimal in an information-content sense because
a text T'[1, u] is stored using O(H(T)) + o(1) bits per in-
put symbol in the worst case, where H(T) is the kth or-
der empirical entropy of T (the bound holds for any fixed
k). Given an arbitrary string P|1, p, the opportunistic data
structure allows to search for the occ occurrences of P inT
in O(p + occlog® u) time (for any fixed ¢ > 0). If data are
uncompressible we achieve the best space bound currently
known [12]; on compressible data our solution improves
the succinct suffix array of [12] and the classical suffix tree
and suffix array data structures either in space or in query
time or both.

Burrows-Wheeler Transform

Reveal structure by turning string “inside out”

https://commons.wikimedia.org/wiki/File:image-2D_and_3D_modulor_Origami.jpg

https://commons.wikimedia.org/wiki/File:Image-2D_and_3D_modulor_Origami.jpg

