
Overlap Layout Consensus assembly
Ben Langmead

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me brie!y how you’re
using them. For original Keynote "les, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Real-world assembly methods

Both handle unresolvable repeats by essentially leaving them out

Fragments are contigs (short for contiguous)

Unresolvable repeats break the assembly into fragments

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

a_long_long_long_time

a_long_long_time a_long	 	 	 	 	 long_time

Assemble substrings
with Greedy-SCS

Assemble substrings
with OLC or DBG

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Re"ne

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Finding overlaps

Can we be less naive than this?

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y,
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we
con"rm that a length-6 pre"x
of Y matches a suffix of X

We’re doing this for every pair of input strings

Finding overlaps

Can we use suffix trees for overlapping?

Problem: Given a collection of strings S, for each string x in S "nd all
overlaps involving a pre"x of x and a suffix of another string y

Hint: Build a generalized suffix tree of the strings in S

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Say query = GACATA. From root, follow path
labeled with query.
Green edge implies length-3 suffix of second
string equals length-3 pre"x of queryATAGAC

	 	 	 |||
	 	 	 GACATA

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a pre"x/suffix match
involving pre"x of query string and suffix of
string ending in the separator.

Strategy:
(1) Build tree
(2)

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

GACATA
	 	 	 |||
	 	 	 ATAGAC

GACATA
	 	 	 	 	 |
	 	 	 	 	 ATAGAC

ATAGAC
	 	 	 |||
	 	 	 GACATA

Now let query be second string: ATAGAC

Finding overlaps with suffix tree

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Say there are d reads of length n, total length
N = dn, and a = # read pairs that overlap

Time to build generalized suffix tree: O(N)
... to walk down red paths: O(N)
... to "nd & report overlaps (green): O(a)
Overall: O(N + a)

d2 doesn’t appear explicitly,
but a is O(d2) in worst case

Assume for given string pair we report only the longest suffix/pre"x match

Finding overlaps

What if we want to allow mismatches and
gaps in the overlap? CTCGGCCCTAGG

	 	 	 |||	 |||||
	 	 	 GGCTCTAGGCCC

X:

Y:I.e. How do we "nd the best alignment of a
suffix of X to a pre"x of Y?

Dynamic programming

But we must frame the problem such that only backtraces
involving a suffix of X and a pre"x of Y are allowed

Finding overlaps with dynamic programming

CTCGGCCCTAGG
	 	 	 |||	 |||||
	 	 	 GGCTCTAGGCCC

X:

Y:

We’ll use global alignment recurrence and score function

Find the best alignment of a suffix of X to a
pre"x of Y

A C G T -‐
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
-‐ 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

But how do we force it to "nd pre"x / suffix matches?

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a pre"x of Y

A C G T -‐
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
-‐ 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

-‐ G G C T C T A G G C C C
-‐
C
T
C
G
G
C
C
C
T
A
G
G

X

Y

How to initialize "rst row & column
so suffix of X aligns to pre"x of Y? 0

0
0
0
0
0
0
0
0
0
0
0
0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

First column gets 0s
(any suffix of X is possible)

First row gets ∞s
(must be a pre"x of Y)

4 12 20 28 36 44 52 60 68 76 84 92
4 8 14 20 28 36 44 52 60 68 76 84
4 8 8 16 20 28 36 44 52 60 68 76
0 4 12 12 20 24 30 36 44 52 60 68
0 0 8 16 16 24 26 30 36 44 52 60
4 4 0 8 16 18 26 30 34 36 44 52
4 8 4 2 8 16 22 30 34 34 36 44
4 8 8 6 2 10 18 26 34 34 34 36
4 8 10 8 8 2 10 18 26 34 36 36
2 6 12 14 12 10 2 10 18 26 34 40
0 2 10 16 18 16 10 0 10 18 26 34
0 0 6 14 20 22 18 10 2 10 18 26

CTCGGCCCTAGG
	 	 	 |||	 |||||
	 	 	 GGCTCTAGGCCC

X:

Y:

Backtrace from last row

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a pre"x of Y

A C G T -‐
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
-‐ 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

-‐ G G C T C T A G G C C C
-‐
C
T
C
G
G
C
C
C
T
A
G
G

X

Y

Problem: very short matches
got high scores by chance...

0
0
0
0
0
0
0
0
0
0
0
0
0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 12 20 28 36 44 52 60 68 76 84 92
4 8 14 20 28 36 44 52 60 68 76 84
4 8 8 16 20 28 36 44 52 60 68 76
0 4 12 12 20 24 30 36 44 52 60 68
0 0 8 16 16 24 26 30 36 44 52 60
4 4 0 8 16 18 26 30 34 36 44 52
4 8 4 2 8 16 22 30 34 34 36 44
4 8 8 6 2 10 18 26 34 34 34 36
4 8 10 8 8 2 10 18 26 34 36 36
2 6 12 14 12 10 2 10 18 26 34 40
0 2 10 16 18 16 10 0 10 18 26 34
0 0 6 14 20 22 18 10 2 10 18 26

...which might obscure the more
relevant match

Say we want to enforce
minimum overlap length l = 5

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a pre"x of Y

A C G T -‐
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
-‐ 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

-‐ G G C T C T A G G C C C
-‐ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 0 4 12 20 28 36 44 52 60 68 76 84 92
T 0 4 8 14 20 28 36 44 52 60 68 76 84
C 0 4 8 8 16 20 28 36 44 52 60 68 76
G 0 0 4 12 12 20 24 30 36 44 52 60 68
G 0 0 0 8 16 16 24 26 30 36 44 52 60
C 0 4 4 0 8 16 18 26 30 34 36 44 52
C 0 4 8 4 2 8 16 22 30 34 34 36 44
C 0 4 8 8 6 2 10 18 26 34 34 34 36
T ∞ 4 8 10 8 8 2 10 18 26 34 36 36
A ∞ 12 6 12 14 12 10 2 10 18 26 34 40
G ∞ 20 12 10 16 18 16 10 0 10 18 26 34
G ∞ ∞ ∞ ∞ ∞ 20 22 18 10 2 10 18 26

X

Y

Solve by initializing certain
additional cells to ∞

Cells whose values changed
highlighted in red

Now the relevant match is the
best candidate

Finding overlaps with dynamic programming

Number of overlaps to try: O(d2)

Size of each dynamic programming matrix: O(n2)

Overall: O(d2n2) = O(N2)

Say there are d reads of length n, total length N = dn, and a is total
number of pairs with an overlap

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(d2)

But dynamic programming is more #exible, allowing mismatches and gaps

Real-world overlappers mix the two, using indexes to $lter out vast majority of
non-overlapping pairs, then using dynamic programming for remaining pairs

Finding overlaps

Overlapping is typically the slowest part of assembly

Consider a second-generation sequencing dataset with
hundreds of millions or billions of reads!

Approaches from alignment unit can be adapted to "nding overlaps

Could also have adapted efficient exact matching,
approximate string matching, co-traversal, ...

We saw adaptations of naive exact matching, suffix-tree-
assisted exact matching, and dynamic programming

Finding overlaps

http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper

Celera Assembler’s overlapper is probably the best documented:

Inverted substring indexes built on batches of reads

Only look for overlaps between reads that share one or more
substrings of some length

http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper
http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Layout

Overlap graph is big and messy. Contigs don’t “pop out” at us.

Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season

l = 4, k = 7

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

ry_thin

thing_t

4

thing

5y_thing

6

urn_tur

rn_turn

6

_turn_t

4

n_turn_

5

a_seaso

_season

6

5

6

turn_tu

4

turn_th

4

here_is

e_is_a_

4

ere_is_

6

re_is_a

5

ing_tur

5hing_tu

6

ng_turn

4

urn_the

there

4

n_there

5rn_ther

6

5

4

there_i

6

very_th

5ery_thi

6

4

every

5

4

every_t

6

6

4

5

is_a_se

5

s_a_sea

4

_is_a_s

6

6

4

5

4

6

5

5

4

5

4

66

4

6

5

o_every

4

6

5

4

6

g_turn_

5

5

6

4

4

_a_seas

5

6

5

6

4

6

5

4

4

4

6

55

6

5

4

6

5

5

44

6

to_ever

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

5

6

4

6

4

5

4

4

6

55

Layout

Anything redundant about this part of the
overlap graph?

Some edges can be inferred (transitively) from
other edges

E.g. green edge can be inferred from blue

Layout

Remove transitively-inferrible edges, starting with edges that skip one
node:

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Before:

x

Layout

ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6 ur
n_
th
e

rn
_t
he
r6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

in
g_
tu
r

4

e_
is_
a_

_i
s_
a_
s

6

6

4

4

6

_t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h6

n_
th
er
e

4

6

o_
ev
er
y 4

6

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

4 4

6

6

g_
tu
rn
_

4

_a
_s
ea
s

6

6

to
_e
ve
r

6

6

6

4

4

6

4

6

6

44

4

6

After:

x
Remove transitively-inferrible edges, starting with edges that skip one
node:

Layout
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6

x
Remove transitively-inferrible edges, starting with edges that skip one
or two nodes: x

Even simpler

After:

Layout

Emit contigs corresponding to the non-branching stretches
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6
to_every_thing_turn_ turn_there_is_a_season
Contig 1 Contig 2

Unresolvable repeat

Layout

In practice, layout step also has to deal with spurious subgraphs, e.g.
because of sequencing error

Possible repeat
boundary

Mismatcha
b

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

...

a

bprune

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Consensus

Take reads that make
up a contig and line
them up

At each position, ask: what nucleotide (and/or gap) is here?

Complications: (a) sequencing error, (b) ploidy

Say the true genotype is AG, but we have a high sequencing error rate
and only about 6 reads covering the position.

TAGATTACACAGATTACTGA	 TTGATGGCGTAA	 CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG	 TTACACAGATTATTGACTTCATGGCGTAA	 CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA	 CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA	 CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA	 CTA
Take consensus, i.e.
majority vote

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

OLC drawbacks

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches.

2nd-generation sequencing datasets are ~ 100s of millions or billions
of reads, hundreds of billions of nucleotides total

Overlap graph is big; one node per read, and in practice # edges
grows superlinearly with # reads

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Re"ne

