Wheeler graphs, part 2

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Can we show Wheeler Graphs are "special," giving us analogs to FM index queries?

We start with "path coherence," the graph version of *consecutivity*

A graph is **path coherent** if there is a total order of the nodes such that:

For any consecutive range [i, j] of nodes and string α , the nodes reached by following edges matching α also form a consecutive range

Consider a single step where our initial set of nodes are in consecutive range [i, j] and, after advancing on a single character $c \in \Sigma$, [i', j'] is the smallest range containing our next set of nodes

We want to show that the nodes in [i', j'] consist *only* of the c-successors of nodes [i, j]

As defined, i' is reachable via an edge labeled c from a node in [i,j] $x = c' \neq c$ Same for i'

Consider node x, where i' < x < j' with incoming edge labeled c'. Suppose $c' \neq c$.

Recall: $a \prec a' \Longrightarrow v \prec v'$ Since $x \not < i'$, we have $c' \not < c$ Since $j' \not < x$, we have $c \not < c'$

We have $c' \ge c$, $c \ge c'$, and $c' \ne c$, giving a contradiction

Could node $x \notin [i, j]$ be a c-predecessor of a node y, i' < y < j'?

No. Proof is by contradiction, similar to previous argument and using:

$$(a = a') \land (u < u') \implies v \le v'$$

For any consecutive range [i, j] of nodes and string α , the nodes reached by following edges matching α also form a consecutive range

Proof takes previous arguments and extends them to string α inductively

How would we represent a Wheeler graph with bitvectors?

Need to represent structure as well as node and edge labels

Idea 1: Encode in- and outdegree of each node in unary

Idea 2: Concatenate in order by node

Here,
$$O = 01010010101011010101$$

0 1 2 3 4 56 7 8 9

$$I = 10010101010101010101$$
0 1 2 3 4 5 6 7 8 9

Idea 3: Encode edge labels corresponding to 0s in \mathcal{O}

$$O = 01010010101011010101$$

 $L = t cg g a a a t a$


```
I = 10010101010101010101

O = 0101001010101010101

L = ttcggaaata
```

```
How long is I? (# edges) + (# nodes) bits
How long is O? (# edges) + (# nodes) bits
How long is L? (# edges) chars
```


$$I = 100101010101010101$$

$$O = 01010010101011010101$$

$$L = ttcggaaata$$

How to find in- or outdegree of a node?

I = 10010101010101010101

G . indegree (i)=I . select $_1(i)-I$. select $_1(i-1)-1$ $({\rm let}\ I\ .\ {\rm select}({\rm -1})={\rm 0})$

$$G$$
. indegree(1) = I . select₁(1) – I . select₁(0) – 1
= $3 - 0 - 1 = 2$

O = 0101001010101010101

G . outdegree(i)=O . select $_1(i)-O$. select $_1(i-1)-1$ (let O . select $_1(i)=0$)

G . outdegree(2) = O . select₁(2) – O . select₁(1) – 1
=
$$6 - 3 - 1 = 2$$

$$I = 100101010101010101$$

$$O = 01010010101011010101$$

$$L = ttcggaaata$$

How to access the labels of the edges outgoing from a node?

$$O = 0101001010101010101$$

 $L = ttcggaaata$

off =
$$O$$
 . rank₀(O . select₁($i-1$))

$$O = 0101001010101010101$$

 $L = ttcggaaata$

```
\begin{aligned} &\text{num} = G \text{. outdegree}(i) \\ &\text{off} = O \text{. rank}_0(O \text{. select}_1(i-1)) \\ &\text{for } j \text{ in } \{0, 1, ..., \text{num-1}\}: \\ &L \text{. access}(\text{off} + j) \end{aligned}
```


$$O = 010100101010101010101$$
 $L = ttcggaaata$

num =
$$G$$
. outdegree(2) = 2
off = O . rank₀(O . select₁(2 - 1))
for j in {0, 1, ..., num-1}:
 L . access(off + j)

$$O = 0101001010101010101$$

 $L = ttcggaaata$

num = 2

$$\rightarrow$$
 off = O . rank₀(O . select₁(2 - 1) = 3)
for j in {0, 1, ..., num-1}:
 L . access(off + j)

$$O = 0101001010101010101$$

 $L = ttcggaaata$

num = 2

$$\rightarrow$$
 off = O . rank₀(3) = 2
for j in {0, 1, ..., num-1}:
 L . access(off + j)

$$O = 0101001010101010101$$

 $L = ttcggaaata$

num = 2
off = 2

$$\rightarrow$$
 for j in $\{0, 1\}$:
 L . access $\{0, 1\}$

$$O = 010100101010101010101$$

 $L = ttcggaaata$

num = 2
off = 2
for
$$j$$
 in {0, 1}:

$$L$$
. access $(2+0) = c$

$$O = 0101001010101010101$$
 $L = ttcggaaata$
 $num = 2$
 $off = 2$
 $for j in \{0, 1\}$:

 $L. access(2 + 1) = g$

Wheeler graph match query:

I: 100101010101010101

O:0101001010101010101

L:ttcggaaata

$$O$$
 . rank₀ $(O$. select₁ $(\dots))$

 $I. \operatorname{rank}_1(I. \operatorname{select}_0(\ldots + C[c]))$

