Jacobson’s Rank

Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).
Jacobson's rank

(Note: the following assumes we are doing \(B \cdot \text{rank}_1 \) queries, but \(B \cdot \text{rank}_0 \) queries are also doable with same methods.)

Basic ideas:

When a bitvector is sparse enough, we can simply \textit{store answers for all 1-bits}

When a bitvector is short enough, we can store \textit{all answers for all possible vectors and queries}

Jacobson's rank

Split the string into chunks of length $\log_2^2 n$

$T : \frac{n}{\log_2^2 n} \times n / \log_2^2 n$

$\log_2^2 n \equiv (\log_2 n)^2$

I'll omit base-2 from logs from now on
Jacobson's rank

Store pre-calculated cumulative rank up to each chunk

\[O \left(\log n \cdot \frac{n}{\log^2 n} \right) = O \left(\frac{n}{\log n} \right) = \tilde{\Theta}(n) \]

bits to store cum. rank

chunks
Jacobson's rank

\[\times n / \log^2 n \]

- \(\log^2 n \cdot \)

So far, extra space is \(\tilde{\mathcal{O}}(n) \)

Finding a rank can be decomposed:

(a) find what chunk it's in (division)

(b) look up cumulative rank

(c) find (relative) rank within chunk

(d) add (b) + (c)

TODO
Jacobson's rank

Say a chunk consists of $2 \log n$ sub-chunks, each of $1/2 \log n$ bits.
Jacobson's rank

Say each sub-chunk has a relative cumulative rank from beginning of chunk.
Jacobson's rank

Since chunk has $\log^2 n$ bits, a relative cum. rank needs
$\log \log^2 n = O(\log \log n)$ bits

$O\left(\frac{n}{\log n}\right)$ sub-chunks overall
(across all chunks),
for total of $O\left(n \cdot \log \log n / \log n\right)$
bits for relative cum. ranks

$O\left(n \cdot \log \log n / \log n\right) = \tilde{o}(n)$
Jacobson's rank

$\log^2 n$

$1/2 \log n$

Extra space for cumulative ranks & relative cumulative ranks still $\tilde{o}(n)$; so far so good

$2 \log n$
Jacobson's rank

Finding a rank:
(a) find what chunk it's in (division)
(b) look up cumulative rank
(c) find rank within chunk
 (c.i) find what sub-chunk it's in
 (c.ii) look up relative cum. rank
 (c.iii) find rank within sub-chunk
(d) add (b) + (c.ii) + (c.iii)
Jacobson's rank

Finding rank within a sub-chunk: two ways of thinking

Way 1: $1/2 \log n$ is ~ a machine word; use instructions like "population count" to find rank in $O(1)$ time

Way 2: Lookup table

(Next slide)
Jacobson's rank

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x$$

possible bitvectors
Jacobson's rank

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x$$

possible bitvectors possible offsets
Jacobson's rank

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x \cdot \log x$$

possible possible answer
bitvectors offsets
Jacobson's rank

Say we naively store answers to all rank queries for all length-x bitvectors. How many bits required?

$$2^x \cdot x \cdot \log x$$

Let $x = 1/2 \log n$

$$2^{1/2 \log n} \cdot 1/2 \log n \cdot \log 1/2 \log n = O \left(\sqrt{n \log n \log \log n} \right) = \tilde{O}(n)$$
Jacobson's rank

Finding a rank:

(a) find what chunk it's in (division)
(b) look up checkpoint
(c) find rank within chunk
 (c.i) find what sub-chunk it's in
 (c.ii) look up relative checkpoint
 (c.iii) find rank within sub-chunk
(d) add (b) + (c.ii) + (c.iii)

\[O(1) \]
Bitvectors

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
<th>Space (bits)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B . \text{access})</td>
<td>(O(1))</td>
<td>(n)</td>
<td>Lookup</td>
</tr>
<tr>
<td>(B . \text{select}_1)</td>
<td>(O(1))</td>
<td>(\tilde{o}(n))</td>
<td>????</td>
</tr>
<tr>
<td>(B . \text{rank}_1)</td>
<td>(O(1))</td>
<td>(\tilde{o}(n))</td>
<td>✔️ Jacobson</td>
</tr>
</tbody>
</table>