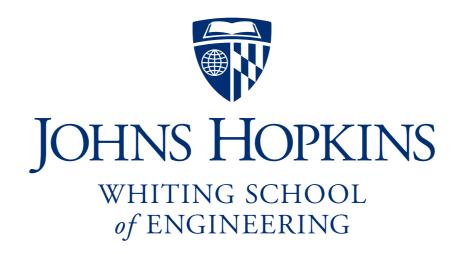
Entropy & coding

Ben Langmead

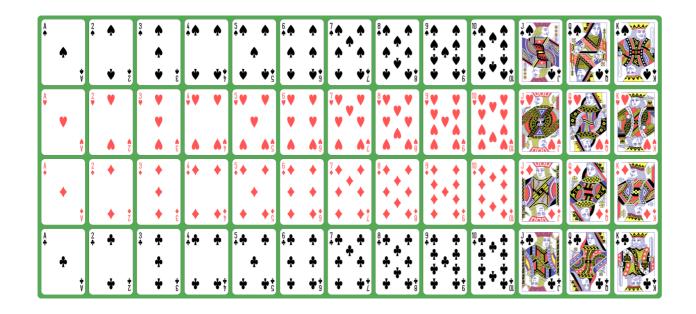


Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Entropy & coding

Let's identify items with codes, made of bits



Say, code = rank + (13 * suit)

Where Ace = 0, Jack = 10, ...

$$\spadesuit = 0, \forall = 1, ...$$

A 🏚	0
2 🏚	1
3 🏚	10
4 🏚	11

10 ♣ 110000 J ♣ 110001 Q ♣ 110010 K ♣ 110011

Entropy & coding

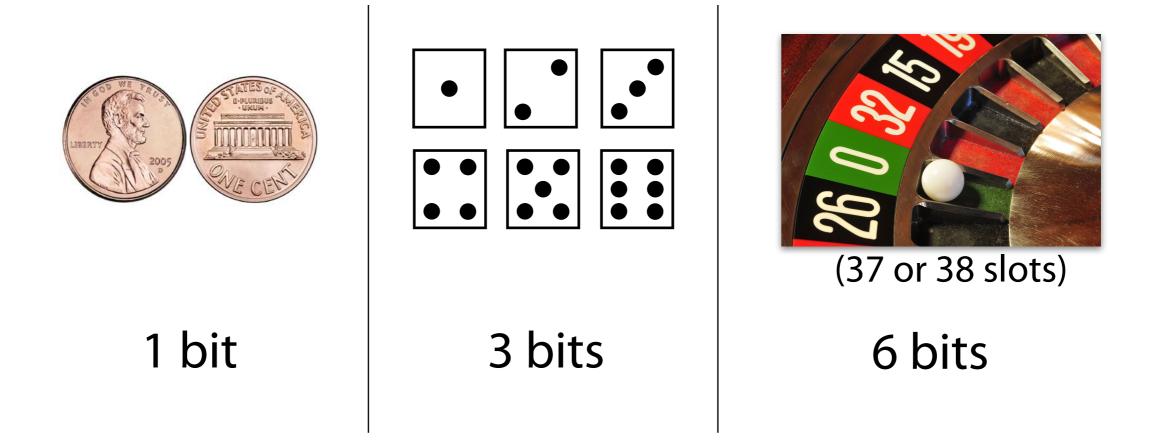
How many bits are required to encode items from universe U?

$$H_{wc}(U) = \log_2 |U|$$

If codes must have **same** length, length must be $\geq \log_2(|U|)$, best choice is $\lceil \log_2(|U|) \rceil$

If codes can have *various* lengths, *longest* code must be $\geq \log_2(|U|)$

How many bits required to identify an item from this set?



$$H_{wc}(U) = \log_2 |U|$$

This is worst-case entropy

If
$$|U|=2^n$$
, then $H_{wc}(U)=n$
If $U=\{\text{length-}n\text{ strings from }\Sigma=\{1,\ldots,\sigma\}\}$, then $H_{wc}(U)=\log_2\sigma^n=n\log_2\sigma$

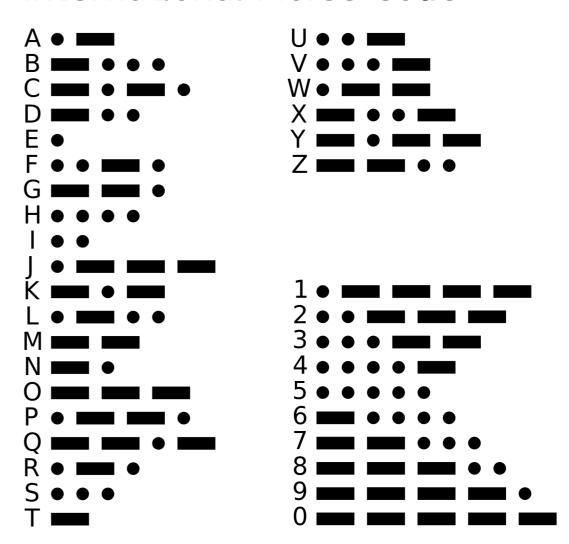
If codes can vary in length, we can use shorter codes for more frequent events

Seeking to minimize average (or *expected*) code length $\bar{\ell}$

$$\bar{\ell} = \sum_{u \in U} \Pr(u) \cdot \ell(u)$$

 $\mathcal{E}(u)$ = length of code for u

International Morse Code



Instead of items $u \in U$, let's think of a discrete r.v. X and its sample space Ω & probability function \Pr

$$H(X) = \sum_{s \in \Omega} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$
$$= -\sum_{s \in \Omega} \Pr(s) \cdot \log_2 \Pr(s)$$

This is *Shannon entropy*

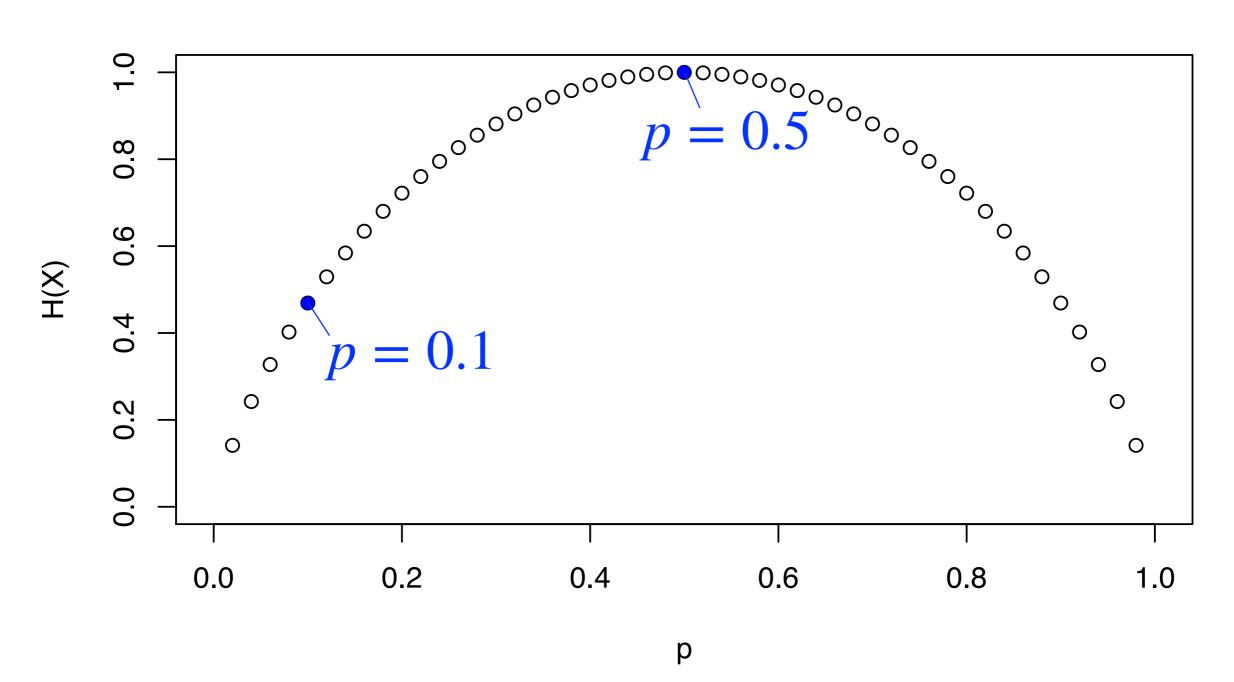
$$X = \left\{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \right\} : 0.5 \end{array}$$

$$H(X) = 0.5 \cdot \log_2 \frac{1}{0.5} + 0.5 \cdot \log_2 \frac{1}{0.5}$$
$$= 0.5 \cdot 1 + 0.5 \cdot 1$$
$$= 1$$

$$X = \{ \begin{array}{c} \\ \\ \\ \\ \end{array} : 0.9, \\ \\ \begin{array}{c} \\ \\ \\ \end{array} : 0.1 \}$$

$$H(X) = 0.9 \cdot \log_2 \frac{1}{0.9} + 0.1 \cdot \log_2 \frac{1}{0.1}$$
$$= 0.9 \cdot 0.15 + 0.1 \cdot 3.32$$
$$= 0.47$$

$$X = \{ (p, p) : p, (p) : 1 - p \}$$



$$H(X) = \sum_{i=1}^{6} \frac{1}{6} \log_2 6$$
$$= \log_2 6 = 2.58$$

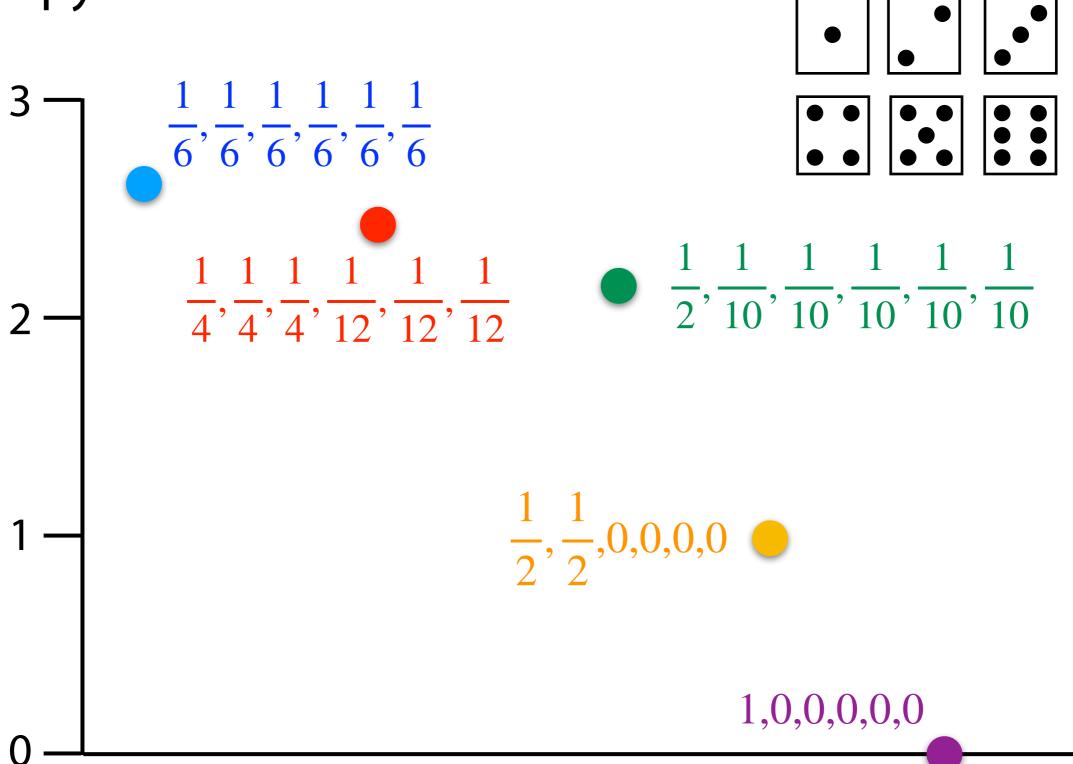
$$\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}$$

$$\frac{1}{2},0,0,0,0$$

$$\frac{1}{2}$$

$$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}$$

$$\frac{1}{2}$$
, $\frac{1}{10}$, $\frac{1}{10}$, $\frac{1}{10}$, $\frac{1}{10}$



When outcomes are equally probable:

$$H(X) = \sum_{s \in \Omega_X} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$

$$= \sum_{s \in \Omega_X} \frac{1}{|\Omega_X|} \cdot \log_2 |\Omega_X|$$

$$= \log_2 |\Omega_X|$$

Matching the definition of worst-case entropy

Shannon entropy H(X) is a function of a random variable

The r.v. models a data **source**; e.g. a person speaking, or letters of a DNA string

Assumes a *memoryless* source; each item is an i.i.d. draw

So far we've seen

Worst-case entropy $H_{wc}(U)$ is a function of a **set**

Shannon entropy H(X), a function of a **random** variable

When outcomes are equiprobable, $H(X) = H_{wc}(\Omega_X)$

Say we have a memoryless binary source and an $example\ string\ B$ it emitted

We can count B's 0s & 1s to "train" a model

$$H_0(B) = H\left(X \sim \text{Bern}\left(\frac{m}{n}\right)\right) \qquad m = \# 1 \sin B$$

$$= \frac{m}{n} \log_2 \frac{n}{m} + \frac{n-m}{n} \log_2 \frac{n}{n-m}$$

 H_0 is the **empirical zero order entropy**

So:

Worst-case entropy $H_{wc}(U)$ is a function of a **set**

Shannon entropy H(X), a function of a **random variable**

Empirical zero order entropy $H_0(B)$ of a **sequence** B is the Shannon entropy of a memoryless source "trained" to B

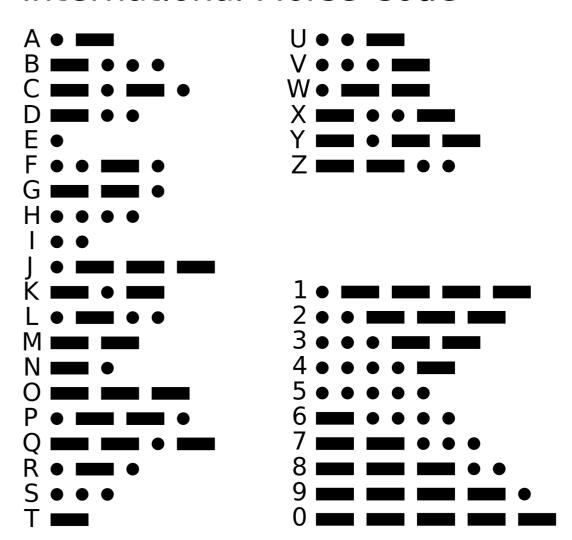
A good code will:

Minimize average code length (approach H_0)

Give *unambiguous*mappings for encoding
& decoding

Allow efficient encoding & decoding

International Morse Code



(Note: letters are separated by a pause of duration equal to three dots; words separated by 7-dot pause.)

$$H(X) = \sum_{s \in \Omega} \Pr(s) \cdot \log_2 \frac{1}{\Pr(s)}$$

Shannon entropy equation hints at codes of length $log_2 \frac{1}{Pr(s)}$

Say we have a source emitting **symbols** from **alphabet** $\Sigma = \{a, c, g, t\}$

Source is *memoryless*, modeled by r.v.:

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

C is a function mapping symbols to binary code sequences. $C:\Sigma \to \{0,1\}$ *

What kind of *C* do we want?

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

Proposal 1

$$C(a) = 0$$

 $C(c) = 10$
 $C(g) = 110$
 $C(t) = 111$
a a g c

$$0 0 1 1 0 1 0$$

Each codeword is unique; i.e. *C* is injective

Example courtesy of Mathematicalmonk videos on information theory https://youtu.be/9MCxXJn7TPU

Can we go recover original string from code?

Proposal 1

$$C(a) = 0$$
 $C(c) = 10$
 $C(g) = 110$
 $C(t) = 111$

7

1110010

Can we go recover original string from code?

Proposal 1

$$C(a) = 0$$

 $C(c) = 10$
 $C(g) = 110$
 $C(t) = 111$
t a a c
yes
1110010

$$X = \{ a : \frac{1}{2}, c : \frac{1}{4}, g : \frac{1}{8}, t : \frac{1}{8} \}$$

Proposal 2

$$C(a) = 0$$
 $C(c) = 1$
 $C(g) = 01$
 $C(t) = 10$
a a g c
$$0 0 0 1 1$$

Again, C is injective

Example courtesy of Mathematicalmonk videos on information theory https://youtu.be/9MCxXJn7TPU

Can we go recover original string from code?

Proposal 2

$$C(a) = 0$$
 $C(c) = 1$
 $C(g) = 01$
 $C(t) = 10$
 00011

Can we go recover original string from code?

Proposal 2

$$C(a) = 0$$
 $C(c) = 1$
 $C(g) = 01$
 $C(t) = 10$
 00011
 $aaac$
 aag

Example courtesy of Mathematicalmonk videos on information theory https://youtu.be/9MCxXJn7TPU

Let C' be the code extended to sequences

$$C': \Sigma^* \to \{0,1\}^*$$

$$C(a) = 0$$
 $C'(a) = 0$
 $C(c) = 10$ $C'(ag) = 0110$
 $C(g) = 110$ $C'(tt) = 111111$
 $C(t) = 111$ $C'(aaaac) = 000010$

Goal is for C' to be injective (C being injective is not enough)

Consider two codes, both unambiguous

A
$$C(a) = 1$$
 $C(c) = 10$
 $C(g) = 00$

$$C(a) = 1$$
 $C(c) = 01$
 $C(g) = 00$

Now we decode:

$$C(a) = 1$$

$$C(c) = 10$$

$$C(g) = 00$$

110010

Considering first 1, can't yet tell if it's an a or part of a c

Now we decode:

$$C(a) = 1$$

$$C(c) = 10$$

$$C(g) = 00$$

110010

Now sure that first 1 is a. Not sure about second 1.

Now we decode:

$$C(a) = 1$$

$$C(c) = 10$$

$$C(g) = 00$$

110010

Either we have

ac...

aag...

Now we decode:

$$C(a) = 1$$

$$C(c) = 10$$

$$C(g) = 00$$

110010

Either we have

acg...

aag...

Now we decode:

A

$$C(a) = 1$$

$$C(c) = 10$$

$$C(g) = 00$$

110010

Now we're sure we have:

But could still be aaga...
or aagc...

Now we decode:

$$C(a) = 1$$

$$C(c) = 10$$

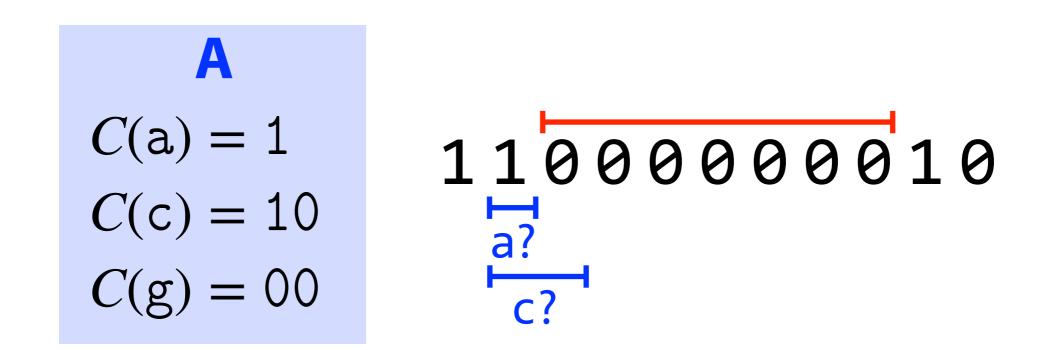
$$C(g) = 00$$

110010

Now we're sure we have:

aagc

Consider an example with a longer run of 0s:



Can't distinguish a from c until we see whether run of 0s is odd or even

Since it's odd, must be a c: acgggc

Now we decode:

B

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Considering first 1, we're immediately sure it's an a

Now we decode:

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Definitely aa

Now we decode:

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Could be aac or aag

Now we decode:

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Definitely aag

Now we decode:

B

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Could be aagc or aagg

Now we decode:

B

$$C(a) = 1$$

$$C(c) = 01$$

$$C(g) = 00$$

110001

Definitely aagc

No problems with decoding efficiency here.

B
$$C(a) = 1$$
 $C(c) = 01$
 $C(g) = 00$

$$C(g) = 00$$

$$C(g) = 00$$

$$C(g) = 00$$

Code is *prefix-free*; no code is a prefix of another. Also called a *prefix code* for short.

AKA instantaneous

Say we start with a string: abracadabra

Can compile symbols and their frequencies:

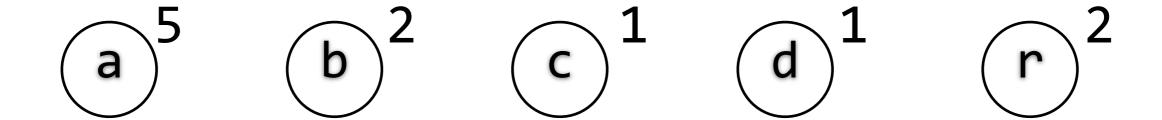
$$\{a:5,b:2,c:1,d:1 r:2\}$$

Or equivalently, a r.v.:

$$X = \{ a : \frac{5}{11}, b : \frac{2}{11}, c : \frac{1}{1}, d : \frac{1}{11}, r : \frac{2}{11} \}$$

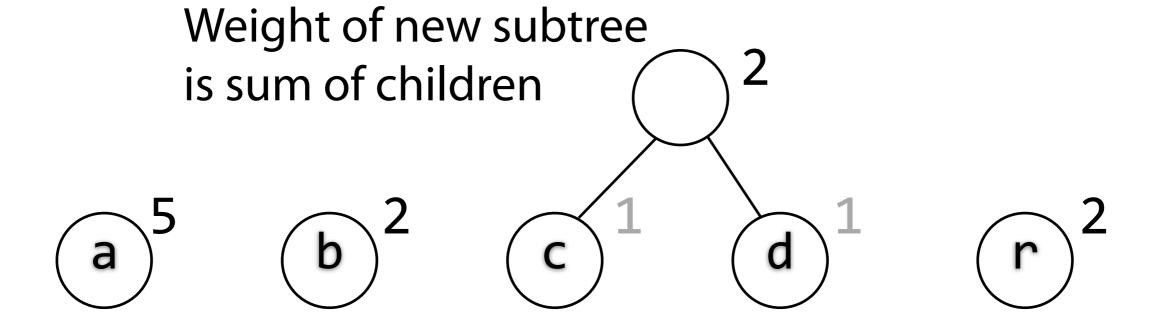
$$\{a:5,b:2,c:1,d:1\ r:2\}$$

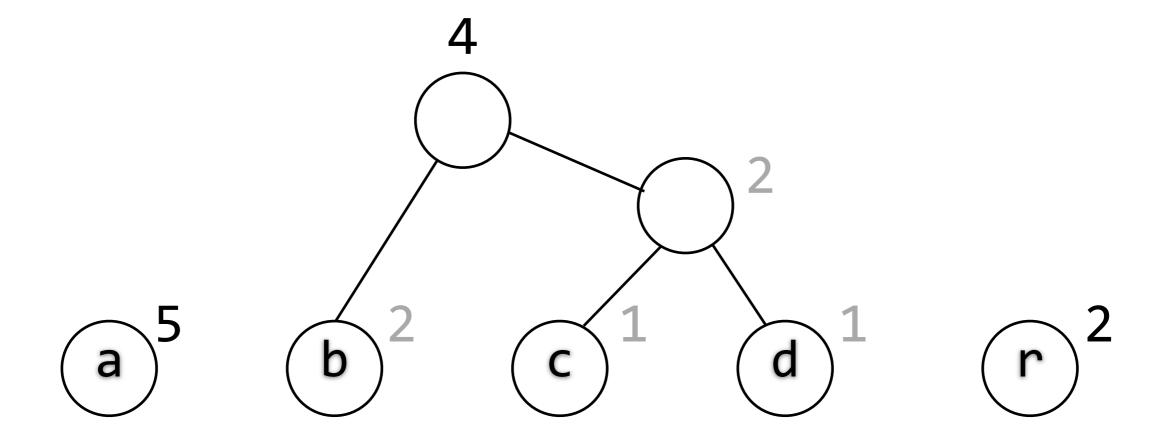
In each round, *join* the 2 subtrees with lowest total weight

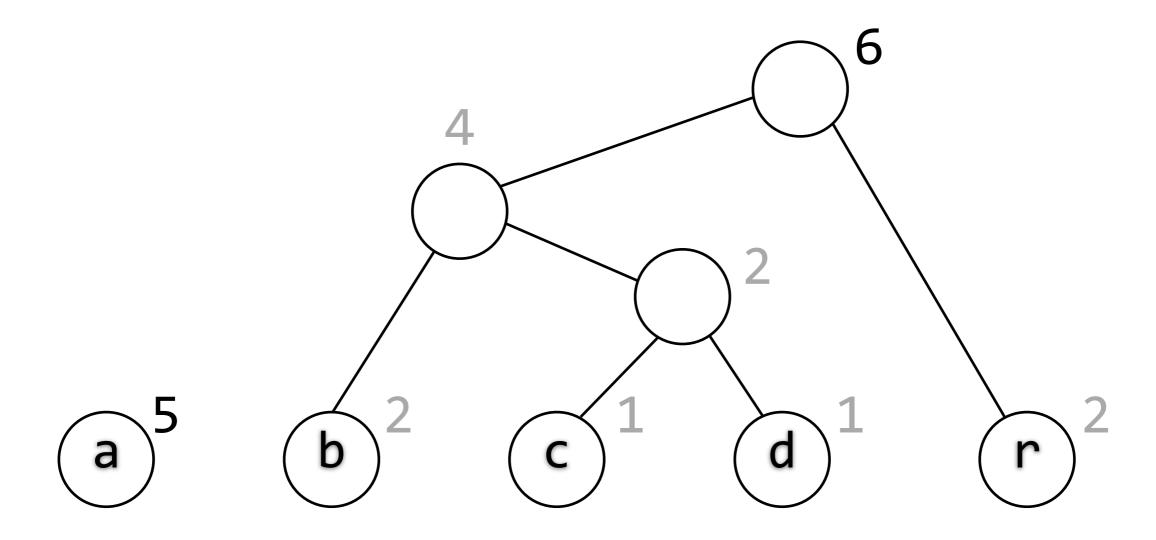


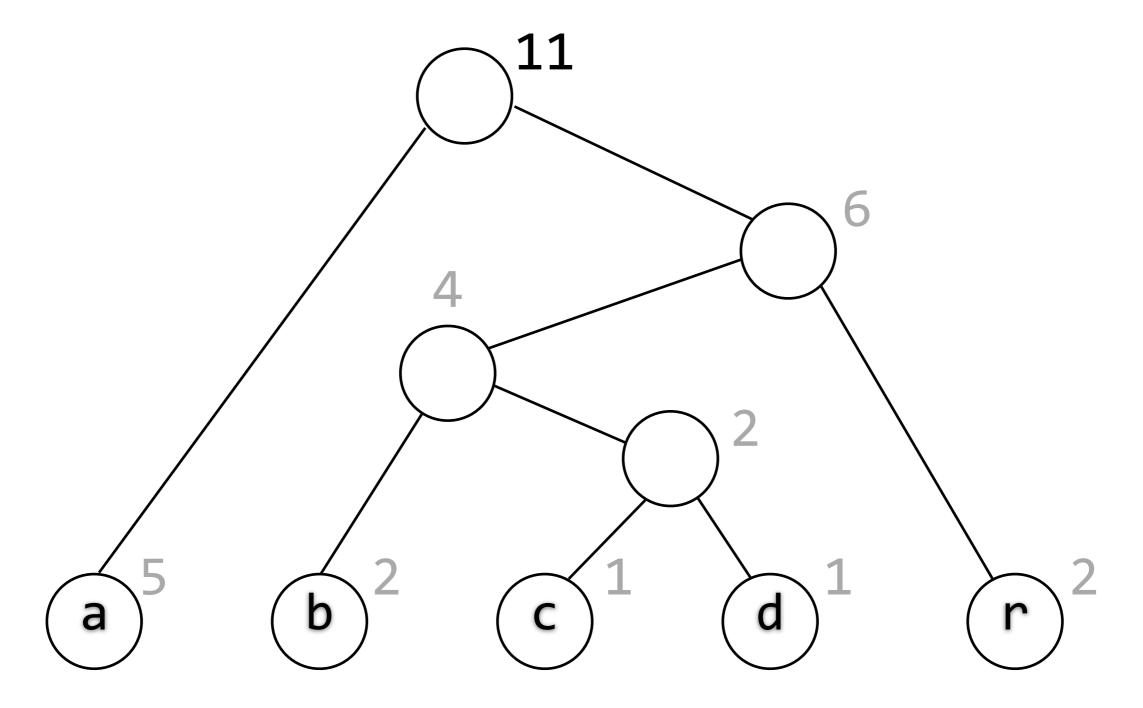
$$\{a:5,b:2,c:1,d:1 r:2\}$$

In each round, *join* the 2 subtrees with lowest total weight

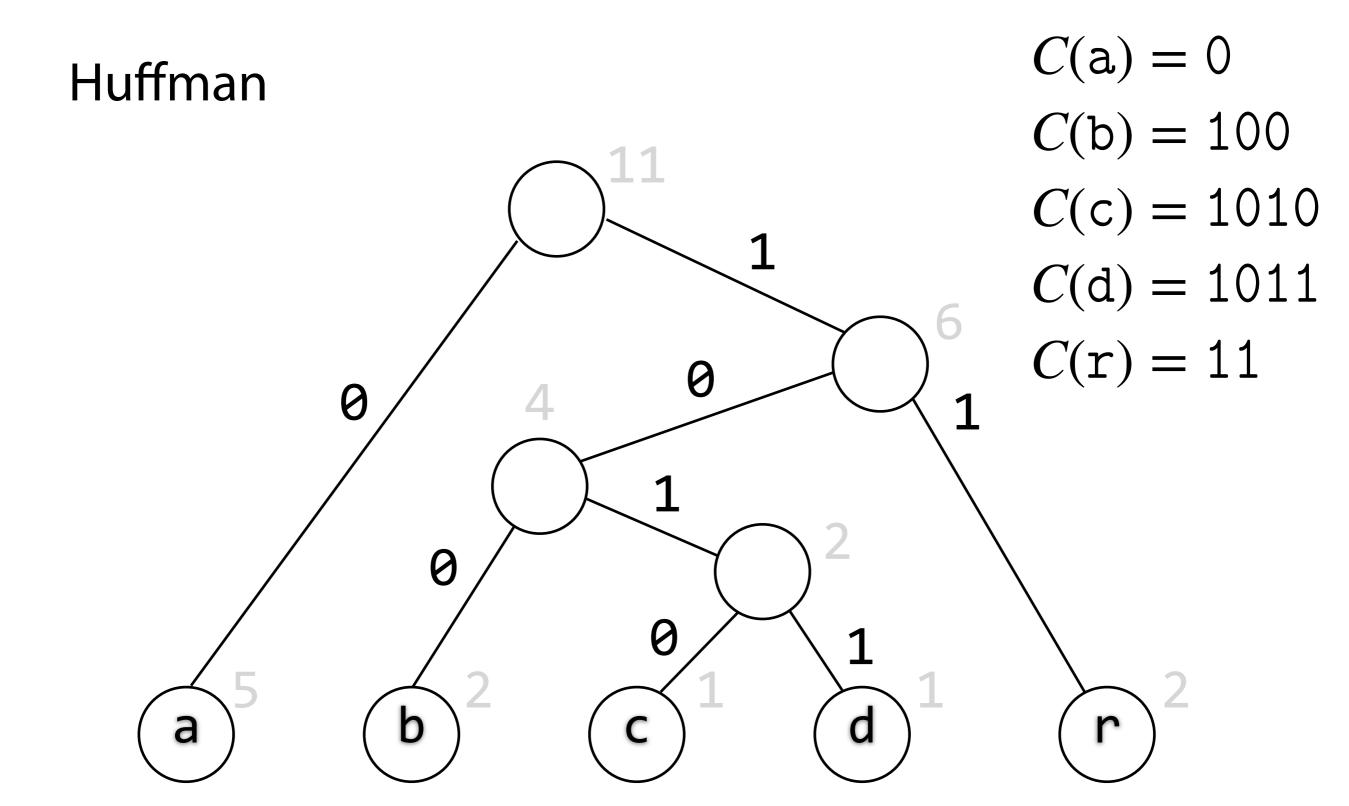








This is the tree but what is the code?



Label edges with 0/1 according to left/right child of parent Codes equal root-to-leaf concatenations of 0/1's

Huffman codes are "optimal," wasting at most 1 bit per symbol

In other words, if c is the number of bits in the Huffman code for an input string S of length n

$$c \le n(H_0(S) + 1)$$
 bits