Assembly in Practice: Part 2: DBG

Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).
Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly
Is it fast to build? Slow?
Is it small? Big?
De Bruijn graph

Pick $k = 8$

Genome: \texttt{a_long_long_long_long_long_time}

Reads: \texttt{a_long_long_long, ng_long_l, g_long_time}

k-mers: \texttt{a_long_l, _long_lo, _long_lon, ong_long, ng_long, g_long_l, _long_ti, _long_tim, ong_tim}

For each read:

For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there already. Draw an edge from left to right k-1-mer.
De Bruijn graph

\[d = 6 \times 10^9 \text{ reads} \]
\[n = 100 \text{ nt} \]
\[\approx 1 \text{ week-long run of Illumina HiSeq 2000} \]

Sequencer outputs \(d \) reads of length \(n \), total length \(N = dn \).

To build graph: Pick \(k \). Usually \(k \) is short relative to read length \((k = 30 \text{ to } 50 \text{ is common})\).

For each read:

For each \(k \)-mer:

Add \(k \)-mer’s left and right \(k-1 \)-mers to graph if not there already. Draw an edge from left to right \(k-1 \)-mer.
De Bruijn graph

\[d = 6 \times 10^9 \text{ reads} \]
\[n = 100 \text{ nt} \]
\[\{ \approx 1 \text{ week-long run of} \]

Sequencer outputs \(d \) reads of length \(n \), total length \(N = dn \).

To build graph: Pick \(k \). Usually \(k \) is short relative to read length (\(k = 30 \) to 50 is common).

\# k-mers (edges): \(O(N) \)

\# nodes is at most \(2 \cdot (\# \text{ edges}) \); typically much smaller due to repeated \(k-1 \)-mers \(O(N) \)
De Bruijn graph

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is $O(1)$ expected work

Say hash map holds nodes & edges

Say k-1-mers fit in $O(1)$ machine words, and hashing $O(1)$ words is $O(1)$ work

Querying / adding a key is $O(1)$ expected work

$O(1)$ expected work for 1 k-mer, $O(N)$ overall
De Bruijn graph

Timed De Bruijn graph construction applied to progressively longer prefixes of lambda phage genome, $k = 14$

$O(N)$ expectation works in practice

(in this case at least)
De Bruijn graph

In typical assembly projects, average coverage is ~ 30 - 50
De Bruijn graph

Before: one edge per k-mer

After: one weighted edge per distinct k-mer
De Bruijn graph

of nodes and edges both $O(N)$

Say (a) reads are error-free, (b) we have one weighted edge for each distinct k-mer, and (c) length of genome is G

1 node per distinct k-1-mer, 1 edge per distinct k-mer

Can’t have more distinct k-mers than k-mers in the genome; likewise for k-1-mers

So # of nodes and edges are both $O(G)$

Combine with the $O(N)$ bound and the # of nodes and edges are both $O(\min(N, G))$
De Bruijn graph

At high coverage, \(O(\min(N, G))\) bound is advantageous

Genome: lambda phage (~48,500 bp)

Draw random \(k\)-mers until target average coverage (x axis) is reached

Build graph, sum # nodes and # edges (y axis)
De Bruijn graph

At high coverage, $O(\min(N, G))$ bound is advantageous

Genome: lambda phage (\sim48,500 bp)

Draw random k-mers until target average coverage (x axis) is reached

Build graph, sum # nodes and # edges (y axis)
De Bruijn graph

Advantages

Can build in $O(N)$ expected time, $N =$ total length of reads

With error-free data, space is $O(\min(N, G))$; $G =$ genome length

When average coverage is high, $G \ll N$

Compares favorably with overlap graph

Overlap graph has node for every read, edge for every overlap

Fast construction (suffix tree) is $O(N + a)$ time, where a is $O(d^2)$
De Bruijn graph

Disadvantages

Reads are immediately split into shorter \(k \)-mers, losing the ability to resolve some repeats resolvable by overlap graph

Only relatively short, exact overlaps are considered, which makes handling of sequencing errors more complicated

We lose read coherence. Some paths through De Bruijn graph are inconsistent with respect to input reads.
Assembly alternatives

<table>
<thead>
<tr>
<th></th>
<th>De Bruijn</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to build</td>
<td>$O(N)$</td>
<td>Suffix tree: $O(N + a)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyn Prog: $O(N^2)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(N)$</td>
<td>$O(N + a)$</td>
</tr>
<tr>
<td>Error-free:</td>
<td>$O(\min(N, G))$</td>
<td></td>
</tr>
</tbody>
</table>

$n = \# \text{ reads}$

$d = \text{read length}$

$N = dn = \# \text{ bases}$

$a = \# \text{ overlaps}; a \in O(n^2)$

$G = \text{source genome length}$

When average coverage is high, $G \ll N$ and the G is the more relevant bound for De Bruijn graph size.
Error correction

When data is error-free, # nodes, edges in De Bruijn graph is $O(\min(G, N))$

What about data with sequencing errors?

$k = 30$

O(G) plateau

Average Lambda phage coverage

De Bruijn graph edges

Average Lambda phage coverage
Error correction

How many possible DNA strings of length k? 4^k

How many possible DNA strings of length 20? $4^{20} = 2^{40} \approx 1$ trillion

How many strings of length 20 in human genome? ~ 3 billion

For large k, set of k-mers in genome is tiny subset of all 4^k k-mers

Errors tend to yield new k-mers that don’t appear elsewhere

Given k-mer from genome, we expect most of its neighbors (e.g. by Hamming distance) are not in the genome

Analogy: correctly / incorrectly spelled words in collection of documents
Error correction

Correcting errors up-front prevents De Bruijn graph from growing far beyond $O(G)$ plateau

How to correct?

Analogy: how to spell check a language you’ve never seen before?

Errors tend to turn frequent words (k-mers) to infrequent ones. Corrections should do the reverse.
Error correction

Left: Take example, mutate a \(k\)-mer character randomly with probability 1%.

Right: 6 errors yield 10 new nodes, 6 new weighted edges, all with weight 1.
Error correction

As more k-mers overlap errors, # nodes & edges approach N

Same experiment as before, with 5% error added

Errors "push through" G bound

$\text{# De Bruijn graph edges}$

Average Lambda phage coverage

$0\%

5\%

O(G) plateau

$k = 30$
Error correction

As more k-mers overlap errors, # nodes & edges approach N

Same experiment as before, with 5% error added

Errors "push through" G bound

(Now with 1% error added)
Error correction

\(k\)-mer count histogram:

x axis is an integer \(k\)-mer count, y axis is \# distinct \(k\)-mers with that count

Right: such a histogram for 3-mers of CATCATCATCATCAT:

\(\text{CAT occurs 5 times}\)

\(\text{ATC and TCA occur 4 times}\)

\(\text{CAT occurs 5 times}\)
Error correction

Draw 20-mers from genome randomly until each 20-mer has been drawn 10 times on average

How would the picture change for data with 1% error rate?
Error correction

k-mers with errors usually occur fewer times than error-free k-mers

![Graph showing the distribution of k-mer counts. The graph compares error-free k-mers (black) and 0.1% error k-mers (red). The y-axis represents the number of distinct k-mers with that count, and the x-axis represents the k-mer count. There is a peak around the k-mer count of 10 for error-free k-mers, while the red line shows a lower peak around the same count for 0.1% error k-mers. There is a note: ~9.6K k-mers occur once.](image-url)
Error correction

Idea: errors tend to turn frequent k-mers to infrequent k-mers, so corrections should do the reverse

Say each 8-mer occurs an average of ~10 times:

Read: GCGTATTACGCGTCTGGCCT (20 nt)

8-mers:
- GCGTATTA: 8
- CGTATTAC: 8
- GTATTACG: 9
- TATTACGC: 9
- ATTACGCG: 10
- TTACGCGT: 10
- TACGCGTC: 11
- ACGCGTCT: 11
- CGCGTCTG: 10
- GCGTCTGG: 10
- CGTCTGGC: 11
- GTCTGGCC: 9
- TCTGGCCT: 8

times each 8-mer occurs in the reads. "k-mer count profile"

All 8-mer counts are near average, suggesting read is error-free
Error correction

Suppose there’s an *error*

Read: GCGTACTACGCGTCTGGCCT

 GCGTACTA: 1
 CGTACTAC: 2
 GCTACTACG: 1
 TACTACGC: 1
 ACTACGCG: 2
 CTACGCGT: 1
 TACGCGTC: 9
 ACGCGTCT: 8
 CGCGTCTG: 10
 GCGTCTGG: 10
 CGTCTGGG: 11
 GTCTGGCC: 9
 TCTGGCCT: 8

Below average *k*-mer count profile has corresponding stretch of below-average counts

Around average
Error correction

k-mer counts when errors are in different parts of the read:

\[
\begin{align*}
\text{GCGTACTACGC} & \quad \text{C} & \quad \text{GCGTCTGGCCT} \\
\text{GCGTACTA}: & \quad 1 & \quad \text{GCGTATTACA} & \quad \text{ACGTC} & \quad \text{GCGTCTGGCCT} \\
\text{CGTACTAC}: & \quad 3 & \quad \text{GCGTATTAC}: & \quad 8 & \quad \text{CGTATTAC}: & \quad 8 \\
\text{GTACTACG}: & \quad 1 & \quad \text{GTATTACA}: & \quad 1 & \quad \text{GTATTACG}: & \quad 9 \\
\text{TACGAGC}: & \quad 1 & \quad \text{TATTACAC}: & \quad 1 & \quad \text{TATTACGC}: & \quad 9 \\
\text{ACTACGCG}: & \quad 2 & \quad \text{ATTACAGC}: & \quad 1 & \quad \text{ATTACGCG}: & \quad 9 \\
\text{CTACGCG}: & \quad 1 & \quad \text{TTACAGC}: & \quad 1 & \quad \text{TTACGCGT}: & \quad 12 \\
\text{TACGCTG}: & \quad 1 & \quad \text{TACGCT}: & \quad 2 & \quad \text{TACGCTG}: & \quad 11 \\
\text{ACGCTGT}: & \quad 8 & \quad \text{ACGCTG}: & \quad 1 & \quad \text{ACGCTGT}: & \quad 9 \\
\text{CGCGCTG}: & \quad 10 & \quad \text{ACGCTGG}: & \quad 1 & \quad \text{GTCTGGGC}: & \quad 9 \\
\text{CGTCTGG}: & \quad 10 & \quad \text{CGTCTGG}: & \quad 11 & \quad \text{GTCTGGCC}: & \quad 2 \\
\text{CGTCTGGC}: & \quad 11 & \quad \text{GTCTGGC}: & \quad 9 & \quad \text{TCTGGT}: & \quad 1 \\
\text{GTCTGGCC}: & \quad 9 & \quad \text{TCTGGCC}: & \quad 8 & \quad \text{GTCTGG}: & \quad 10 \\
\text{TCTGGGC}: & \quad 8 & \quad \text{TCTGGGC}: & \quad 11 & \quad \text{TCTGGGC}: & \quad 1 \\
\end{align*}
\]
Error correction

Count profile indicates where errors are

These probably overlap an error
Error correction

Simple algorithm, given a count threshold t:

For each read:

For each k-mer:

If k-mer count $< t$:

Examine k-mer’s neighbors within some Hamming/edit distance. If neighbor has count $\geq t$, replace old k-mer with neighbor.

Pick t corresponding to dip between the peaks
def correct1mm(read, k, kmerhist, alpha, thresh):
 ''' Return an error-corrected version of read. k = k-mer length.
 kmerhist is kmer count map. alpha is alphabet. thresh is
 count threshold above which k-mer is considered correct. '''
 # Iterate over k-mers in read
 for i in range(0, len(read)-(k-1)):
 kmer = read[i:i+k]
 # If k-mer is infrequent...
 if kmerhist.get(kmer, 0) <= thresh:
 # Look for a frequent neighbor
 for newkmer in neighbors1mm(kmer, alpha):
 if kmerhist.get(newkmer, 0) > thresh:
 # replace with neighbor
 read = read[:i] + newkmer + read[i+k:]
 break
 return read

Full Python example: http://bit.ly/CG_ErrorCorrect
Error correction: results

Corrects 99.2% of errors in an example with 0.1% error added

From 194K k-mers occurring exactly once to just 355
Error correction: results

Also works for 1% error...

Uncorrected, graph size is off the chart

Corrected, graph size is near G bound

...provided enough coverage to distinguish frequent/infrequent
Error correction

To work well:

Average coverage & k must be such that we can distinguish frequent from infrequent k-mers

k-mer neighborhood explored must be broad enough to find frequent neighbors. Depends on error rate and k.

Alternately, we might give up on correcting and simply remove bad k-mers

Data structure for storing k-mer counts should be smaller than the De Bruijn graph

Otherwise, what's the point? 😊
Data structures for error correction

Bloom filters

Counting quotient filters

Don’t need 100% accurate k-mer counts; just have to distinguish frequent and infrequent

CountMin sketches

Assembly alternatives

- Overlap
 - Layout
 - Consensus

- Error correction
 - De Bruijn graph
 - Refine

Scaffolding
Error correction should remove most tips & islands; rest can be removed here, leveraging graph structure.
Assembly alternatives

- **Overlap**
- **Layout**
- **Consensus**

- **Error correction**
- **De Bruijn graph**
- **Refine**

Remove remaining "islands" "tips" and "bubbles" so that contigs are more obvious.