Index-Assisted Approximate Matching

Ben Langmead

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).
Dynamic programming summary

A powerful set of tools:

- DP deals naturally with both mismatches and gaps
- DP scoring can take into account variation, sequencing error, etc

Along the way we saw an algorithm we might use for read alignment:

\[\begin{array}{cccccccccccccccc}
\text{A} & \text{A} & \text{C} & \text{C} & \text{T} & \text{A} & \text{T} & \text{G} & \text{T} & \text{C} & \text{A} & \text{T} & \text{G} & \text{C} & \text{T} & \text{T} & \text{G} & \text{A} \\
\text{P} & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{T} & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\text{A} & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 1 \\
\text{C} & 3 & 2 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 \\
\text{G} & 4 & 3 & 3 & 3 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 3 & 3 & 2 & 2 & 3 \\
\text{T} & 5 & 4 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\text{C} & 6 & 5 & 5 & 4 & 3 & 3 & 4 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 4 \\
\text{A} & 7 & 6 & 5 & 5 & 4 & 4 & 4 & 4 & 3 & 2 & 1 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 5 & 4 \\
\text{G} & 8 & 7 & 6 & 6 & 5 & 5 & 5 & 5 & 4 & 4 & 3 & 2 & 2 & 3 & 4 & 5 & 5 & 4 & 4 & 5 \\
\text{C} & 9 & 8 & 7 & 6 & 6 & 5 & 6 & 6 & 5 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 4 & 5 & 5 & 5 & 5 \\
\end{array} \]

Finding approximate occurrences of \(P \) in \(T \)

...but no faster than \(O(mn) \) and \(m \) is big!!!
A de-motivating example

\[d = 6 \times 10^9 \text{ reads} \]
\[n = 100 \text{ nt} \]
\[m = 3 \times 10^9 \text{ nt} \approx \text{human} \]

\[\approx 1 \text{ week-long run of} \]

Say we have 1,000 processors, each clocked at 3 GHz, each capable of completing 8 dynamic programming cell updates per clock cycle

(We’re being optimistic)

Total of \(d \times m \times n = 2 \times 10^{21} \) cell updates

Takes > 2 years
A de-motivating example

\[d = 6 \times 10^9 \text{ reads} \]
\[n = 100 \text{ nt} \]
\[m = 3 \times 10^9 \text{ nt} \approx \text{human} \]

\{ \approx 1 \text{ week-long run of} \}

Illumina HiSeq 2000

Problem: our dynamic programming approach is \(O(dmn) \)

We’ll now consider two ideas for how to maintain the power of dynamic programming while diminishing effect of \(m \)
Index-assisted approximate matching

Idea 1: Use index for exact-matching subproblems, follow up with DP

Partition P, like for pigeonhole

Index finds exact partition matches (hits)

Use DP in vicinity of exact matches
Index-assisted approximate matching

Index-assisted function for finding occurrences of \(P \) in \(T \) with up to \(k \) edits:

```python
def queryIndexEdit(p, t, k, index):
    ''' Look for occurrences of \( p \) in \( t \) with up to \( k \) edits using an index combined with dynamic-programming alignment. '''
l = index.ln
occurrences = []
seen = set()  # for avoiding reporting same hit twice
for part, poff in partition(p, k+1):
    for hit in index.occurrences(part):
        # query index w/ partition
        # left edge of \( T \) to include in DP matrix
        lf = max(0, hit - poff - k)
        # right edge of \( T \) to include in DP matrix
        rt = min(len(t), hit - poff + len(p) + k)
        mn, off, xcript = kEditDp(p, t[lf:rt])
        off += lf
        if mn <= k and (mn, off) not in seen:
            occurrences.append((mn, off, xcript))
            seen.add((mn, off))
return occurrences
```

Index-assisted approximate matching

Think in terms of the full P-to-T dynamic programming matrix

Index is identifying diagonal stretches of matches
These are likely to be part of a high-scoring alignment
Many stretches within a few diagonals of each other are even more likely to be part of a high-scoring alignment
Neighborhood search

Idea 2: Use index to find exact occurrences of strings in P’s neighborhood

Neighborhood = set of strings within some Hamming / edit distance

The 1-edit neighborhood of cat, using DNA alphabet:

- cat, aat, gat, tat, cct, cg, ctt, caa, cac, cag, ca, ct, at, acat, ccat, gcat, tcat, ...
- All ways to add 1 mismatch
- All ways to delete 1 char
- All ways to insert 1 char

The 2-mismatch neighborhood of cat:

- cat, aat, gat, tat, cct, cg, ctt, caa, cac, cag
- All ways to add 1 mismatch
- All ways to add 2nd mismatch to aat
- All ways to add 2nd mismatch to gat
- ...

Neighborhood search

Idea 2: Use index to find occurrences of strings in P's “neighborhood”

Is the neighborhood huge? Can we bound it?

If $|P| = n$, and $|\Sigma| = a$, how many strings are within Hamming distance 1?

$$1 + n(a - 1)$$

P itself

$a - 1$ ways to replace each of P's n chars

How many strings are within edit distance 1?

$$1 + n(a - 1) + n + (n + 1)a$$

Delete each char in P

$n + 1$ positions where we can insert any of the a characters

In both cases, $O(an)$ strings in the neighborhood

* Some insertions are equivalent. E.g. there are two equivalent insertions of ‘a’ into ‘cat’. Likewise deletions (‘caat’).
Neighborhood search

How about within Hamming or edit distance 2?

$O(an)$ strings within Hamming or edit distance 1, each
with $O(an)$ neighbors within distance 1, so $O(a^2n^2)$

Within distance k?

$O(a^k n^k)$

How much work to query suffix tree with all strings within distance k?

$O(n + \# \text{ occurrences})$ for each of the $O(a^k n^k)$ strings, so roughly $O(a^k n^{k+1})$

Compare to $O(a^k n^{k+1})$ to $O(mn)$ for full dynamic programming

Good: no m Bad: exponential in k
Neighborhood search

Organize neighborhood of P into a trie

Neighbors of $P = CAA$, within hamming distance 1:

leaves = # neighbors = $1 + n(a - 1) = 1 + 3(4 - 1) = 10$
Neighborhood search

Navigating and/or building neighborhood trie is simple with recursion

Assume Hamming distance for now: Move left-to-right across P and start with “budget” of k mismatches

At each step, for each alphabet character c:

- If c matches current character in P, recursively build subtree starting at next position of P with same budget

- If c mismatches current character in P and budget > 0, recursively build subtree starting at next position of P with 1 subtracted from budget. Otherwise if budget $= 0$, move on.
Neighborhood search

```python
>>> stringNeighbors("cat", "acgt", edits=1, gaps=False)
['aat', 'gat', 'tat', 'cct', 'cgt', 'ctt', 'caa', 'cac', 'cag', 'cat']
>>> stringNeighbors("cat", "acgt", edits=1, gaps=True)
['acat', 'ccat', 'gcat', 'tcat', 'at', 'aat', 'gat', 'tat', 'caat',
 'ccat', 'cgat', 'ctat', 'ct', 'cct', 'cgt', 'ctt', 'caat', 'cact',
 'cagt', 'catt', 'ca', 'caa', 'cac', 'cag', 'cata', 'catc', 'catg',
 'catt', 'cat']
```
Co-traversal

Say index is a suffix trie. Imagine querying it with each neighbor.

Suffix trie of $T = \text{ACATAG}$

Trie for neighborhood within 1 mismatch of $P = \text{CAA}$
Co-traversal

Say index is a suffix trie. Imagine querying it with each neighbor.

Suffix trie of $T = ACATAG$

Trie for neighborhood within 1 mismatch of $P = CAA$

Try AAA: we fall off suffix trie after A, before AA
Co-traversal

Say index is a suffix trie. Imagine querying it with each neighbor.

Suffix trie of $T = \text{ACATAG}$

Trie for neighborhood within 1 mismatch of $P = \text{CAA}$

Next try CAA: we fall off suffix trie after CA, before CAA
Co-traversal

Say index is a suffix trie. Imagine querying it with each neighbor.

Suffix trie of $T = ACATAG$

Trie for neighborhood within 1 mismatch of $P = CAA$

CAC and CAG also fail. Next try CAT: success.
Co-traversal

Say index is a suffix trie. Imagine querying it with each neighbor.

Suffix trie of $T = ACATAG$

Trie for neighborhood within 1 mismatch of $P = CAA$

Common path ending in a neighbor leaf corresponds to an alignment of a neighbor of P to a substring of T
Co-traversal

We can find all such alignments with co-traversal: explore all paths that are present in both trees and end in a neighbor leaf.

Lexicographical depth-first co-traversal visits node pairs in this order:

Suffix trie of $T = ACATAG$

Trie for neighborhood within 1 mismatch of $P = CAA$

Only visited 8 nodes in these 20- and 22-node tries
Co-traversal

We can also conduct *best-first* search, visiting paths with fewer edits before paths with more edits:

At this point we know there are no exact matches, so we widen our net to include alignments with at least one mismatch.

Light blue nodes match P exactly. Others have 1 mismatch.

Trie for neighborhood within 1 mismatch of $P = CAA$.

Suffix trie of $T = ACATAG$.
Co-traversal

We can also conduct *best-first* search, visiting paths with fewer edits before paths with more edits:

Light blue nodes match P exactly. Others have 1 mismatch.

Suffix trie of $T = \text{ACATAG}$

Trie for neighborhood within 1 mismatch of $P = \text{CAA}$
Co-traversal: pruning

We can think of the tree we’re exploring as being the *intersection* of these two trees...
Co-traversal: pruning

Suffix trie of $T = ACATAG$ \(\bigcap\) Trie for neighborhood within 1 mismatch of $P = CAA$
Co-traversal: indexing

Co-traversal uses the shape of the suffix trie, but we don’t want to actually build it. It’s $O(m^2)$ space. What’s an alternative?
Co-traversal: indexing

Alternative 1: Replace suffix trie with suffix tree

Suffix tree of $T = ACATAG\$
Co-traversal: indexing

Alternative 2: Replace suffix trie with suffix array

If we know range of SA elements with A as a prefix, additional binary searching gives range with AC as a prefix

Even if we don’t build suffix trie/tree, suffix array allows us to traverse it
Alternative 3: Replace suffix trie with FM Index

Similar argument as suffix array, using LF Mapping instead of binary search

To traverse suffix trie, we need to build FM Index of $T' = \text{reverse}(T)$

Why?

Typical FM Index matches successively longer suffixes of P. If we want to match successively longer prefixes, we have to reverse T before building FM Index.

Suffix trie of $T = ACATAG$
Alignment summary

Exact matching with naive algorithm and Boyer-Moore
Online versus offline
Inverted indexes using substrings
Approximate matching: pigeonhole, q-gram lemma
Suffix indexes:
 Suffix Trie & Tree: querying, naive building
 Suffix Array: querying with binary search, accelerants
 FM Index: querying with LF mapping
Dynamic programming: edit distance, global alignment, local alignment
Combining dynamic-programming alignment with indexes; co-traversal