Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Randomness & independence

02965 58 98859 23 33666 62	303 90° 851 279 570 64°	134 638 708 200 965 623 775 784 422 057	25 94 28
89793 343 78155 224 16381 663	378 087 466 819 207 110	866 143 730 565 978 573 698 993 867 377	22 23 14
84543 874 77757 540 80871 32	142 500 043 46	176 423 989 722	21 91 48

 h_2

 h_1

A family of hash functions H from universe U with $|U| \ge n$ to range $\{0, 1, ..., n-1\}$ is **2-universal** if

for distinct elements x_1, x_2 and for function h drawn uniformly from H:

$$\Pr\left(h(x_1) = h(x_2)\right) \le \frac{1}{n}$$

Let's prove a useful expectation for hash tables...

A set S of m items have been hashed to an n-bucket hash table using h from a 2-universal family

For given element x let r.v. X be the number of items in bucket h(x). We want to show:

$$\mathbf{E}[X] \le \begin{cases} m/n & \text{if } x \notin S \\ 1 + (m-1)/n & \text{if } x \in S \end{cases}$$

Not-in-table case

1 if
$$m = n$$

In-table case

$$< 2$$
 if $m = n$

$$\mathbf{E}[X] \le \begin{cases} m/n & \text{if } x \notin S \\ 1 + (m-1)/n & \text{if } x \in S \end{cases}$$

Let X_i be a r.v. $X_i = 1$ when the i^{th} element of S is in same bucket as x. $X_i = 0$ otherwise

$$\Pr(X_i = 1) \le \frac{1}{n}$$
 By 2-universality!

$$x \notin S$$
 case Linearity
$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} \mathbf{E}[X_i] \le \frac{m}{n}$$

2-universality

+ expectation of indicator

$$\mathbf{E}[X_i] = \Pr(X_i = 1) \le \frac{1}{n}$$

$$\mathbf{E}[X] \le \begin{cases} m/n & \text{if } x \notin S \\ 1 + (m-1)/n & \text{if } x \in S \end{cases}$$

Let X_i be a r.v. $X_i = 1$ when the i^{th} element of S is in same bucket as x. $X_i = 0$ otherwise

Without loss of generality, use i = 1 for item x

$$\Pr(X_i = 1) \le \frac{1}{n} \quad \text{for } i > 1$$

$$x \in S$$
 case Linearity
$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{m} X_i\right] = 1 + \sum_{i=2}^{m} \mathbf{E}[X_i] \le 1 + \frac{m-1}{n}$$
 2-universality

2-universality

+ expectation of indicator

Proving a key property; with 2-universal hashing, expected query time is O(1) when $m \le n$

$$\mathbf{E}[X] \le \begin{cases} m/n & \text{if } x \notin S \\ 1 + (m-1)/n & \text{if } x \in S \end{cases}$$

Not-in-table case

1 if
$$m = n$$

In-table case

$$\sim$$
2 if $m=n$

What kind of family has this property?

Are functions easy to draw from the family?

Are functions easy to store and compute with?

Universe $U: \{0, 1, 2, ..., m-1\}$ Range $V: \{0, 1, 2, ..., n-1\}$ with $n \le m$ Prime $p \ge m$

Example of a 2-universal family from U to V:

$$H = \{h_{a,b} \mid 1 \le a \le p-1, \ 0 \le b \le p-1\}$$

 $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

A prime field \mathbf{F}_p is a number system consisting of integers modulo a prime p, and rules for plus & times

Plus & times have many of our favorite properties

+	0	1	2	3	4	\mathbf{F}_5	X	0	1	2	3	0
0	0	1	2	3	4	J	0	0	0	0	0	0
1	1	2	3	4	0		1	0	1	2	3	4
2	2	3	4	0	1		2	0	2	4	1	3
3	3	4	0	1	2		3	0	3	1	4	2
4	4	0	1	2	3		4	0	4	3	2	1

Fields are special for having multiplicative inverses

Each number (except 0) has another it multiplies with to get 1

$$2 \cdot 3 = 3 \cdot 2 = 1 \mod 5$$

 $4 \cdot 4 = 1 \mod 5$
 $1 \cdot 1 = 1 \mod 5$

F_{5}	Х	0	1 0 1 2 3 4	2	3	4
3	0	0	0	0	0	0
	1	0	1	2	3	4
	2	0	2	4	1	3
	3	0	3	1	4	2
	4	0	4	3	2	1

Does modulo a non-prime work?

Signs of trouble. 1) We sometimes get 0s when multiplying non-0s

Does modulo a non-prime work?

Signs of trouble. 1) We sometimes get 0s when multiplying non-0s

2) Some rows don't have 1; no multiplicative inverse

Choose distinct $x_1, x_2 \in U$. Can they collide in p?

$$ax_1 + b \stackrel{?}{=} ax_2 + b \mod p$$

$$ax_1+b = ax_2+b \mod p$$

$$ax_1 = ax_2 \mod p$$

$$a(x_1 - x_2) = 0 \mod p$$

We said $a \ge 1$ and $x_1 \ne x_2$ Left side is product of two numbers and neither is 0 mod p.

Can ac = zp, where p is a prime, z is some integer multiple, and a & c are $not \ 0 \mod p$?

$$ac = zp$$

Consider prime factorizations of a and c

For equality to hold, p must be a prime factor of a or c, contradicting "a & c are not 0 mod p"

$$ac \neq zp$$

Every column is a permutation of integers mod 5. Therefore: no collisions. Distinct xs get distinct answers

Is every columns necessarily a permutation of another column?

Given x_1, x_2, u, v , what is the chance that $h_{a,b}(x_1) = u$ and $h_{a,b}(x_2) = v$?

$$(a x_1 + b) = u \mod p$$
$$(a x_2 + b) = v \mod p$$

$$a = \frac{v - u}{x_2 - x_1} \mod p$$

$$b = u - ax_1 \mod p$$

Fact 2: Single choice of a, b satisfies the equations. $0 \le b \le p-1$ and $1 \le a \le p-1$, so chance is $\frac{1}{p(p-1)}u$, v pairs are equally likely

collisions from **final mod** n

Taking a number u in the prime field, the others $\pm zn$ are its colliders w/r/t V

For p = 11 & n = 4, 20 out of 110 u, v pairs collide (red squares)

For given u, number of possible v's ($u \neq v$) is p - 1, all equally likely

At most $\lceil p/n \rceil - 1$ choices are collisions

$$\Pr\left(h_{a,b}(x_1) = h_{a,b}(x_2)\right) \le \frac{\lceil p/n \rceil - 1}{p - 1} \le \frac{(p - 1)/n}{p - 1} = \frac{1}{n}$$

