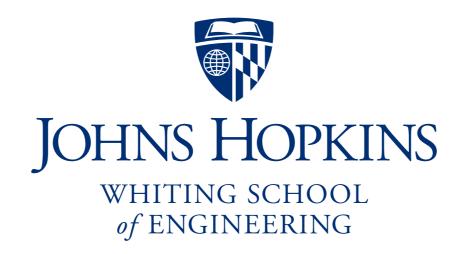
Coupon collector & more Bloom filters

Ben Langmead



Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

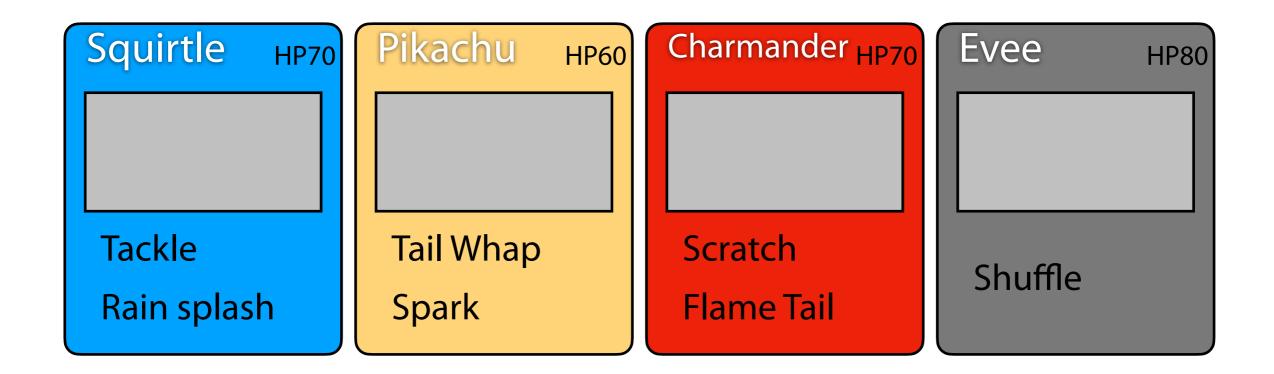
Balls and Bins

Say we've chosen n & k, and our set-bit fraction target is 50%

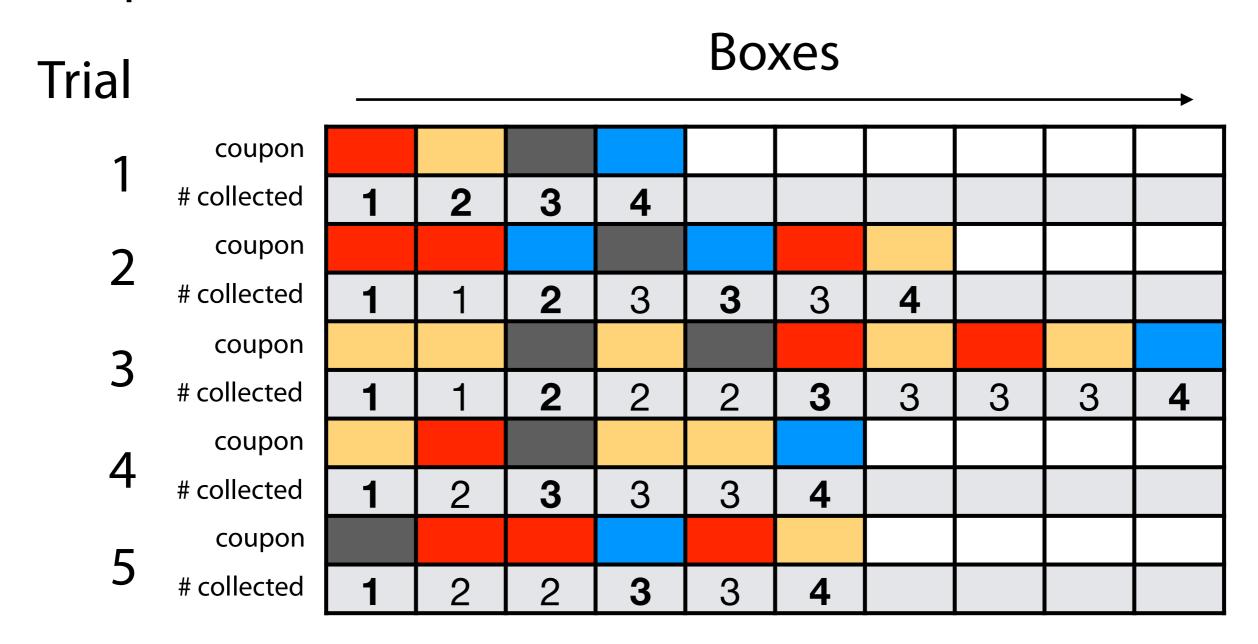
Can we use Balls-and-Bins thinking to estimate what m would get us there?

I throw *m* balls into *n* bins uniformly and independently. What can I ask?

Category	Questions	Approach	
Empty/ non empty	How many What's the chance buckets are all buckets are until 1/2 of bins are non-empty? How many balls until 1/2 of bins are non-empty?	Coupon collector	
Collisions / no collisions	How many throws What is the until there is a >0.5 chance no bin chance of a collision? has >1 item?	Birthday problem	
Local (single bin) occupancy	What's the occupancy What is the chance of a given bucket? a given bucket has >2 items?	Binomial & Poisson r.v.s	
Global occupancy	What is the What is the median bucket maximum bucket occupancy? occupancy?	Often hard E.g. M&U Lemma 5.1 on p100	



We have n "coupons" to collect. We collect them by opening boxes of cereal. Each box has 1 random coupon; probability is uniform (1/n) chance of each) and independent (no box affects another).



Squirtle

Pikachu

Charmander

Evee

How many boxes until we collect em all?

Formally: if X is an r.v. for # boxes up to and including box with final coupon, what is $\mathbf{E}[X]$?

Idea: partition sequence into *stages* by # coupons collected so far

1	2	3	4						
1	1	2	3	3	3	4			
1	1	2	2	2	3	3	3	3	4

Bernoulli random variable

An r.v. X is a Bern(p) (Bernoulli) random variable if it takes value 1 with probability p, 0 otherwise

A fair coin is Bern(0.5), letting heads=1 and tails=0. A *loaded* coin that lands heads with probability 0.75 is Bern(0.75).

$$\mathbf{E}[X] = p$$

Geometric random variable

Geom(p) random variable X equals # trials of a Bern(p) r.v. up to the first success

$$Pr(X = n) = (1 - p)^{n-1} p$$
failures 1st success

$$\mathbf{E}[X] = \frac{1}{p}$$

Let X_i for i = 1, 2, ..., n be r.v.s for # boxes bought while holding i - 1 coupons

For
$$X$$
 as just defined, $X = \sum_{i=1}^{\infty} X_i$ Sum is stratified by "stage"

If we hold i-1 coupons, probability p_i that next box has a new coupon is: n-(i-1)

A "loaded coin" we flip repeatedly until success; sounds like ... a geometric

Each X_i is Geom(p_i)

Each X_i is a Geom (p_i) r.v. and

$$\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}$$

With linearity of expectation:

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}]$$

$$= \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i}$$

Say want to keep a Bloom filters's set-bit ratio near 50%. What # items can we add until the expected set-bit ratio exceeds 0.5?

$$n \sum_{i=1}^{n} \frac{1}{n-i+1}$$
 Instead of summing to
$$n (100\%), \text{ stop after}$$
 50% of coupons

$$n \sum_{i=1}^{\lceil 0.5 \cdot n \rceil} \frac{1}{n-i+1}$$

$$n \sum_{i=1}^{\lceil \alpha \cdot n \rceil} \frac{1}{n-i+1}$$

n	n/2	Coupon collector until 50%		Coupon collector until 100%	
100	50		68.82	518.74	
1,000	500		692.65	7,485.47	
10,000	5,000		6,930.97	97,876.06	
100,000	50,000		69,314.22	1,209,014.61	

Approaching Tracking with $n \ln 2$ $n \ln n$

Can you see why?