What are Genomics and Computational Genomics?

Ben Langmead

Department of Computer Science

Johns Hopkins
Whiting School of Engineering

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).
Genomics

What do you know about genomes and genomics?
Where did you hear about them?
1993

JURASSIC PARK
READING THE BOOK OF LIFE: THE OVERVIEW

READING THE BOOK OF LIFE: THE OVERVIEW;
Genetic Code of Human Life Is Cracked by Scientists

By NICHOLAS WADE
Published: June 27, 2000
Sequencing

When I started graduate school in 2007, sequencing technology was entering a new era...
Human Genome Project ends

Adoption of 2nd generation sequencing

Moore’s Law

NIH
National Human Genome Research Institute
genome.gov/sequencingcosts

Cost per Genome

$100M
$10M
$1M
$100K
$10K
$1K

DNA sequencing instruments from Illumina: www.illumina.com

- **GA II**
 - 1.6 billion nt/day (2008)

- **GA IIx**
 - 5 billion nt/day (2009)

- **HiSeq 2000**
 - 75 billion nt/day (2011)

- **HiSeq 2500**
 - 120 billion nt/day (2012)

- **HiSeq 3000/4000**
 - 200-400 billion nt/day (2015)

- **NovaSeq 5000/6000**
 - 1-3 trillion nt/day (2017)

nt = nucleotide = A, C, G or T
Team of Rival Scientists Comes Together to Fight Zika

By AMY HARMON MARCH 30, 2016

A visualization of the recently sequenced Aedes aegypti genome. Each of the 3,752 colored lines is a fragment of its three chromosomes that could not be fit together without the additional information that the Aedes Genome Working Group hopes to produce. A 2007 genome map for Aedes aegypti is fragmented into about 10 times as many pieces. Mark Kunitomi
Studying Tumors Differently, in Hopes of Outsmarting Them

By CARL ZIMMER
ONE OF A KIND

What do you do if your child has a condition that is new to science?

BY SETH MNOOKIN
Man’s Genome From 45,000 Years Ago Is Reconstructed

OCT. 22, 2014
Carl Zimmer
Sequencing

Sequencing is now a common tool for life scientists

The story echoes that of computing; once computers became fast & cheap, they were adopted everywhere
Genome

“The complete set of genes or genetic material present in a cell or organism.”

“Blueprint” or “recipe” of life

Self-copying store of read-only information about how to develop and maintain an organism
Genomics

“The branch of molecular biology concerned with the structure, function, evolution, and mapping of genomes.”

what are the physical shapes of the genome and its products?
what does all the DNA do?
how do sequences change over evolutionary time?
where are the genes and other interesting bits?

“Collins English Dictionary

“The branch of molecular genetics concerned with the study of genomes, specifically the identification and sequencing of their constituent genes and the application of this knowledge in medicine, pharmacy, agriculture, etc.”
Genomics: contrast with biology & genetics*

Biology & Genetics
- Targeted studies of one or a few genes
- Targeted, low-throughput experiments
- Clever experimental design, painstaking experimentation

Genomics
- Studies considering all genes in a genome
- Global, high-throughput experiments
- Tons of data, uncertainty, computation

*This slide has gross generalizations

Scope

Technology

Hard part
Genomics: shaped by technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger DNA sequencing</td>
<td>1977-1990s</td>
</tr>
<tr>
<td>DNA Microarrays</td>
<td>Since mid-1990s</td>
</tr>
<tr>
<td>2nd-generation DNA sequencing</td>
<td>Since ~2007</td>
</tr>
<tr>
<td>3rd-generation & single-molecule DNA sequencing</td>
<td>Since ~2010</td>
</tr>
</tbody>
</table>

These provide very high-resolution snapshots of the world of nucleic acids (not just DNA)
Genomics: tool for basic science

“The branch of molecular biology concerned with the structure, function, evolution, and mapping of genomes.”

Structure / mapping
- What is the DNA sequence of the genome?
- Where are the genes?
- What is the genome’s three dimensional shape in the cell?

Function
- What does all the DNA in the genome do?
- What genes interact with what other genes?
- How does the cell know what DNA is on/off?

Evolution
- How did history shape our ethnicities and populations?
- What big events shaped our current genetics?
- Which portions of the genome are conserved by evolution?
Genomics: tool for medicine

“The branch of molecular genetics concerned with the study of genomes, specifically the identification and sequencing of their constituent genes and the application of this knowledge in medicine, pharmacy, agriculture, etc.”

Collins English Dictionary

How is genotype related to health phenotypes?
What’s the difference between DNA in a tumor vs DNA in healthy tissue?
Can genomic data help predict what drugs might be appropriate for:
 • a particular cancer patient?
 • a particular genetic disorder?
Can genomic data reveal weaknesses in the defenses of pathogens?
Can genomic data help us predict what flu strains will prevail next year?
Computational Genomics

Addresses crucial problems at the intersection of genomics and computer science

The intersection:

Key biological models are straight out of computer science: circuits and networks for molecular interactions, trees for evolution and pedigrees, strings for DNA, RNA and proteins

Thanks to sequencers and microarrays, research bottlenecks increasingly hinge on computational issues: speed, scalability, energy, cost

With large, noisy, biased high-throughput datasets comes a critical need for machine learning and statistical reasoning
Computational Genomics: computation

How to efficiently analyze the huge quantities of fragmentary evidence that come from DNA sequencers

How to model biological phenomena and make predictions

How to combine data from disparate datasets to reach new conclusions in the presence of error and systematic bias

How to store huge quantities of data economically and securely while also allowing it to be queried

How to visualize large, complicated datasets

Draws on: Algorithms, data structures, pattern matching, indexing, compression, information retrieval, distributed and parallel computing, cloud computing, machine learning, ...
The BLAST sequence alignment program is a hugely successful tool, a fixture of biological analysis and cited over 50,000 times.
Computational Genomics: success stories

The Human Genome Project depended crucially on contributions by computer scientists, especially new methods for assembling DNA fragments into chromosomes.
The idea of using high-throughput DNA sequencing in medical settings is only possible because of novel, extremely efficient software developed in the years after second-generation sequencers arrived.
Links

Past winners of the (Computational Biology) Overton Prize: www.iscb.org/iscb-awards/overton-prize

Genomics and sequencing in the popular press: www.cs.jhu.edu/~langmea/poppress.shtml

The DNA Data Deluge (behind paywall): https://doi.org/10.1109/MSPEC.2013.6545119