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1Outline

• Machine Translation: History & Problem Formulation

• Language Model

• Encoder-Decoder NMT Model

• Training & Inference

• Alternative NMT Models
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some history
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3An Old Idea

Warren Weaver on translation
as code breaking (1947):

When I look at an article in Russian, I say:
”This is really written in English,
but it has been coded in some strange symbols.
I will now proceed to decode”.
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4Early Efforts and Disappointment

• Excited research in 1950s and 1960s

1954
Georgetown experiment
Machine could translate

250 words and
6 grammar rules

• 1966 ALPAC report:

– only $20 million spent on translation in the US per year
– no point in machine translation
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5Rule-Based Systems

• Rule-based systems

– build dictionaries
– write transformation rules
– refine, refine, refine

• Météo system for weather forecasts (1976)

• Systran (1968), Logos and Metal (1980s)

"have" :=

if

subject(animate)

and object(owned-by-subject)

then

translate to "kade... aahe"

if

subject(animate)

and object(kinship-with-subject)

then

translate to "laa... aahe"

if

subject(inanimate)

then

translate to "madhye... aahe"
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6Statistical Machine Translation

• 1980s: IBM

• 1990s: increased research

• Mid 2000s: Phrase-Based MT (Moses, Google)

• Around 2010: commercial viability

• Since mid 2010s: neural network models
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7Hype

Hype

1950 1960 1970 1980 1990 2000 2010

Reality

Georgetown 
experiment

Expert systems /
5th generation AI

Statistical 
MT

Neural 
MT
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how good is machine translation?
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9Machine Translation: Chinese
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10Machine Translation: French
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11A Clear Plan

Source Target

Lexical Transfer

Interlingua
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12A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Interlingua
Ana

lys
is

Generation
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13A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Semantic Transfer

Interlingua

Ana
lys

is
Generation

- Neural Machine Translation August 2018



14A Clear Plan

Source Target

Lexical Transfer

Syntactic Transfer

Semantic Transfer

Interlingua

Ana
lys

is
Generation
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15Learning from Data

Statistical 
Machine 

Translation 
System

Training Data Linguistic Tools

Statistical 
Machine 

Translation 
System

Translation

Source Text
Training Using

parallel corpora
monolingual corpora

dictionaries
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why is that a good plan?
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17Word Translation Problems

• Words are ambiguous

He deposited money in a bank account
with a high interest rate.

Sitting on the bank of the Mississippi,
a passing ship piqued his interest.

• How do we find the right meaning, and thus translation?

• Context should be helpful
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18Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334
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19Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334

• Counts in European Parliament corpus
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20Learning from Data

• What is the best translation?

Sicherheit→ security 14,516
Sicherheit→ safety 10,015
Sicherheit→ certainty 334

• Phrasal rules
Sicherheitspolitik→ security policy 1580

Sicherheitspolitik→ safety policy 13
Sicherheitspolitik→ certainty policy 0

Lebensmittelsicherheit→ food security 51
Lebensmittelsicherheit→ food safety 1084
Lebensmittelsicherheit→ food certainty 0

Rechtssicherheit→ legal security 156
Rechtssicherheit→ legal safety 5

Rechtssicherheit→ legal certainty 723
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21Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700
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22Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700

• Hits on Google
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23Learning from Data

• What is most fluent?

a problem for translation 13,000

a problem of translation 61,600

a problem in translation 81,700

a translation problem 235,000
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24Learning from Data

• What is most fluent?

police disrupted the demonstration 2,140

police broke up the demonstration 66,600

police dispersed the demonstration 25,800

police ended the demonstration 762

police dissolved the demonstration 2,030

police stopped the demonstration 722,000

police suppressed the demonstration 1,400

police shut down the demonstration 2,040

- Neural Machine Translation August 2018
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26Terminology

• Text, Corpus, Data is often used interchangeably.

• Parallel Text (Bitext): sentence-aligned text
{(s1, t1), (s2, t2), . . . , (s99999, t999999)}

• Source text→ Target text

• We use the training data (bitext) to estimate parameters of our model

• We use the Development/Validation data to select models or tune a few
hyperparameters.

• Finally, report results on Test data, i.e. translate source text of test and compare
with target text of test.

- Neural Machine Translation August 2018



27

Questions?

- Neural Machine Translation August 2018



28Outline

• Machine Translation: History & Problem Formulation

• Language Model

• Encoder-Decoder NMT Model

• Training & Inference

• Alternative NMT Models
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29Language Model (a very important task!)

• Goal: Given the past words, predict the next word

• p(wi|w1, ..., wi−1) ' p(wi|wi−4, wi−3, wi−2, wi−1)

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n 

La
ye

r
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30Representing Words

• Words are represented with a one-hot vector, e.g.,

– dog = (0,0,0,0,1,0,0,0,0,....)
– cat = (0,0,0,0,0,0,0,1,0,....)
– eat = (0,1,0,0,0,0,0,0,0,....)

• To model |V |words, one-hot vector is length |V |

• We would like to map words to smaller-dimension word embeddings first
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31Feedforward Neural Language Model

Word 1

Word 2

Word 3

Word 4

Word 5

H
id

de
n 

La
ye

rC

C

C

C

• Map each word first into a lower-dimensional real-valued space

• Shared weight matrix C
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32Word Embeddings

C

Word Embedding

• By-product: embedding of word into continuous space

• Similar contexts→ similar embedding
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33Word Embeddings
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34Word Embeddings
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35Are Word Embeddings Magic?

• Morphosyntactic regularities (Mikolov et al., 2013)

– adjectives base form vs. comparative, e.g., good, better
– nouns singular vs. plural, e.g., year, years
– verbs present tense vs. past tense, e.g., see, saw

• Semantic regularities

– clothing is to shirt as dish is to bowl
– evaluated on human judgment data of semantic similarities
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recurrent neural networks
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37Recurrent Neural Networks

Word 1 Word 2EC

1

H

• Start: predict second word from first

• Mystery layer with nodes all with value 1
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38Recurrent Neural Networks

Word 1 Word 2EC

1

H

Word 2 Word 3EC H

H

copy values
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39Recurrent Neural Networks

Word 1 Word 2EC

1

H

Word 2 Word 3EC H

H

copy values

Word 3 Word 4EC H

H

copy values
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40Training

Word 1 Word 2E

1

H

• Process first training example

• Update weights with back-propagation
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41Training

Word 2 Word 3E

H

H

• Process second training example

• Update weights with back-propagation

• And so on...

• But: no feedback to previous history
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42Back-Propagation Through Time

Word 1 Word 2E

H

H

Word 2 Word 3E H

Word 3 Word 4E H

• After processing a few training examples,
update through the unfolded recurrent neural network
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43Back-Propagation Through Time

• Carry out back-propagation though time (BPTT) after each training example

– 5 time steps seems to be sufficient

– network learns to store information for more than 5 time steps
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long short term memory
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45Vanishing Gradients

• Error is propagated to previous steps

• Updates consider

– prediction at that time step
– impact on future time steps

• Vanishing gradient: propagated error disappears
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46Recent vs. Early History

• Hidden layer plays double duty

– memory of the network
– continuous space representation used to predict output words

• Sometimes only recent context important

After much economic progress over the years, the country→ has

• Sometimes much earlier context important

The country which has made much economic progress over the years still→ has
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47Long Short Term Memory (LSTM)

• Design quite elaborate, although not very complicated to use

• Basic building block: LSTM cell

– similar to a node in a hidden layer
– but: has a explicit memory state

• Output and memory state change depends on gates

– input gate: how much new input changes memory state
– forget gate: how much of prior memory state is retained
– output gate: how strongly memory state is passed on to next layer.

• Gates can be not just be open (1) and closed (0), but slightly ajar (e.g., 0.2)
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48LSTM Cell

input gate  

output gate  

forget gate  

X i

m o

⊗ ⊕

⊗ h

m

⊗

LSTM Layer Time t-1

Next Layer
Y

LSTM Layer Time t

Preceding Layer
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49LSTM Cell (Math)

• Memory and output values at time step t

memoryt = gateinput × inputt + gateforget ×memoryt−1

outputt = gateoutput ×memoryt

• Hidden node value ht passed on to next layer applies activation function f

ht = f(outputt)

• Input computed as input to recurrent neural network node

– given node values for prior layer ~xt = (xt1, ..., x
t
X)

– given values for hidden layer from previous time step ~ht−1 = (ht−1
1 , ..., ht−1

H )
– input value is combination of matrix multiplication with weights wx and wh

and activation function g

inputt = g

(
X∑
i=1

wxi x
t
i +

H∑
i=1

whi h
t−1
i

)
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50Values for Gates

• Gates are very important

• How do we compute their value?

→with a neural network layer!

• For each gate a ∈ (input, forget, output)

– weight matrix W xa to consider node values in previous layer ~xt

– weight matrix Wha to consider hidden layer ~ht−1 at previous time step
– weight matrix Wma to consider memory at previous time step ~memoryt−1

– activation function h

gatea = h

(
X∑
i=1

wxai x
t
i +

H∑
i=1

whai ht−1
i +

H∑
i=1

wmai memoryt−1
i

)
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51Training

• LSTM are trained the same way as recurrent neural networks

• Back-propagation through time

• This looks all very complex, but:

– all the operations are still based on
∗ matrix multiplications
∗ differentiable activation functions

→ we can compute gradients for objective function with respect to all parameters

→ we can compute update functions
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52What is the Point?

(from Tran, Bisazza, Monz, 2016)

• Each node has memory memoryi independent from current output hi

• Memory may be carried through unchanged (gateiinput = 0, gateimemory = 1)

⇒ can remember important features over long time span

(capture long distance dependencies)
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53Visualizing Individual Cells

Karpathy et al. (2015): ”Visualizing and Understanding Recurrent Networks”
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54Gated Recurrent Unit (GRU)

update gate  

reset gate  

X x ⊕ h

h

⊗

GRU Layer Time t-1

Next Layer
Y

GRU Layer Time t

Preceding Layer
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55Gated Recurrent Unit (Math)

• Two Gates

updatet = g(Wupdate inputt + Uupdate statet−1 + biasupdate)

resett = g(Wreset inputt + Ureset statet−1 + biasreset)

• Combination of input and previous state
(similar to traditional recurrent neural network)

combinationt = f(W inputt + U(resett ◦ statet−1))

• Interpolation with previous state

statet =(1− updatet) ◦ statet−1 +

updatet ◦ combinationt) + bias
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56Language Models: Quick Summary

• Modeling variants

– feed-forward neural network

– recurrent neural network (LSTM and GRU cells)

• Next: Language modeling on target, but include source information!
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Questions?
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58Outline

• Machine Translation: History & Problem Formulation

• Language Model

• Encoder-Decoder NMT Model

• Training & Inference

• Alternative NMT Models
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59Recurrent Neural Language Model (Again)

<s>

the

Given 
word

Embedding

Hidden 
state

Predicted 
word

Predict
the first word
of a sentence

Same as before,
just drawn top-down
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60Recurrent Neural Language Model (Again)

<s>

the

the

house

Given 
word

Embedding

Hidden 
state

Predicted 
word

Predict
the second word

of a sentence

Re-use hidden state
from

first word prediction
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61Recurrent Neural Language Model

<s>

the

the

house

house

is

Given 
word

Embedding

Hidden 
state

Predicted 
word

Predict
the third word
of a sentence

... and so on
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62Recurrent Neural Language Model

<s>

the

the

house

house is big .

is big . </s>

Given 
word

Embedding

Hidden 
state

Predicted 
word
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63Recurrent Neural Translation Model

• We predicted the words of a sentence

• Why not also predict their translations?

- Neural Machine Translation August 2018



64Encoder-Decoder Model

<s>

the

the

house

house is big .

is big . </s>

Given 
word

Embedding

Hidden 
state

Predicted 
word

</s>

das

das

Haus

Haus ist groß .

ist groß . </s>

• Obviously madness

• Proposed by Google (Sutskever et al. 2014)
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65What is missing?

• Alignment of input words to output words

⇒ Solution: attention mechanism
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neural translation model
with attention
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67Input Encoding

Given
word

Embedding

Hidden
state

Predicted
word

• Inspiration: recurrent neural network language model on the input side
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68Hidden Language Model States

• This gives us the hidden states

H1 H2 H3 H4 H5 H6

• These encode left context for each word

• Same process in reverse: right context for each word

Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6
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69Input Encoder

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

• Input encoder: concatenate bidrectional RNN states

• Each word representation includes full left and right sentence context
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70Encoder: Math
Input Word

Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

• Input is sequence of words xj, mapped into embedding space Ē xj

• Bidirectional recurrent neural networks

←−
hj = f(

←−−
hj+1, Ē xj)

−→
hj = f(

−−→
hj−1, Ē xj)

• Various choices for the function f(): feed-forward layer, GRU, LSTM, ...
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71Decoder

• We want to have a recurrent neural network predicting output words

Hidden State

Output Words
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72Decoder

• We want to have a recurrent neural network predicting output words

Hidden State

Output Words

• We feed decisions on output words back into the decoder state
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73Decoder

• We want to have a recurrent neural network predicting output words

Input Context

Hidden State

Output Words

• We feed decisions on output words back into the decoder state

• Decoder state is also informed by the input context
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74More Detail

Context

State

ti-1 ti
Word

Prediction

yi-1

Eyi-1

Selected 
Wordyi

Eyi Embedding

sisi-1

cici-1

• Decoder is also recurrent neural network
over sequence of hidden states si

si = f(si−1, Ey−1, ci)

• Again, various choices for the function f():
feed-forward layer, GRU, LSTM, ...

• Output word yi is selected by computing a
vector ti (same size as vocabulary)

ti = W (Usi−1 + V Eyi−1 + Cci)

then finding the highest value in vector ti

• If we normalize ti, we can view it as a
probability distribution over words

• Eyi is the embedding of the output word yi
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75Attention

Encoder States

Attention

Hidden State

Output Words

• Given what we have generated so far (decoder hidden state)

• ... which words in the input should we pay attention to (encoder states)?
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76Attention

Encoder States

Attention

Hidden State

Output Words

• Given: – the previous hidden state of the decoder si−1

– the representation of input words hj = (
←−
hj,
−→
hj)

• Predict an alignment probability a(si−1, hj) to each input word j
(modeled with with a feed-forward neural network layer)

- Neural Machine Translation August 2018



77Attention

Encoder States

Attention

Input Context

Hidden State

Output Words

• Normalize attention (softmax)
αij =

exp(a(si−1, hj))∑
k exp(a(si−1, hk))

• Relevant input context: weigh input words according to attention: ci =
∑
j αijhj
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78Attention

Encoder States

Attention

Input Context

Hidden State

Output Words

• Use context to predict next hidden state and output word
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79Encoder-Decoder with Attention

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Attention

Input Context

Hidden State

Output Words
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Questions?
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81Outline

• Machine Translation: History & Problem Formulation

• Language Model

• Encoder-Decoder NMT Model

• Training & Inference

• Alternative NMT Models
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training
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83Computation Graph

• Math behind neural machine translation defines a computation graph

• Forward and backward computation to compute gradients for model training

sigmoid

sum

b2prod

W2sigmoid

sum

b1prod

W1x
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84Unrolled Computation Graph
Input Word

Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Attention

Input Context

Hidden State

Output Word
Predictions

Given 
Output Words

Error

Output Word
Embedding

<s> the house is big . </s>

<s> das Haus ist groß , </s>
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85Batching

• Already large degree of parallelism

– most computations on vectors, matrices
– efficient implementations for CPU and GPU

• Further parallelism by batching

– processing several sentence pairs at once
– scalar operation→ vector operation
– vector operation→matrix operation
– matrix operation→ 3d tensor operation

• Typical batch sizes 50–100 sentence pairs

- Neural Machine Translation August 2018



86Batches

• Sentences have different length

• When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
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87Mini-Batches

• Sort sentences by length, break up into mini-batches

• Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
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88Overall Organization of Training

• Shuffle corpus

• Break into maxi-batches

• Break up each maxi-batch into mini-batches

• Process mini-batch, update parameters

• Once done, repeat

• Typically 5-15 epochs needed (passes through entire training corpus)

- Neural Machine Translation August 2018
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inference
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90Inference

• Given a trained model

... we now want to translate test sentences

• We only need execute the ”forward” step in the computation graph
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91Word Prediction

si-1

ci

si

Context

State

ti-1 ti
Word

Prediction

yi-1

Eyi-1

Selected 
Wordyi

Eyi Embedding

ci-1
the

cat

this

of

fish

there

dog

these

  yi Eyi
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92Selected Word

si-1

ci

si

Context

State

ti-1 ti
Word

Prediction

yi-1

Eyi-1

Selected 
Wordyi

Eyi Embedding

ci-1
the

cat

this

of

fish

there

dog

these

  yi Eyi
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93Embedding

si-1

ci Context

State

ti-1 ti
Word

Prediction

yi-1

Eyi-1

Selected 
Wordyi

Eyi Embedding

ci-1
the

cat

this

of

fish

there

dog

these

  yi Eyi

si
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94Distribution of Word Predictions

  yi the

cat

this

of

fish

there

dog

these
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95Select Best Word

the  yi the

cat

this

of

fish

there

dog

these
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96Select Second Best Word

this

the  yi the

cat

this

of

fish

there

dog

these
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97Select Third Best Word

this

the  yi the

cat

this

of

fish

there

dog

these

these
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98Use Selected Word for Next Predictions

this

the  yi the

cat

this

of

fish

there

dog

these

these

- Neural Machine Translation August 2018



99Select Best Continuation

this

the  yi the

cat

this

of

fish

there

dog

these

these

cat
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100Select Next Best Continuations

this

the  yi the

cat

this

of

fish

there

dog

these

these

cat

cat

cats

dog

cats
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101Continue...

this

the  yi the

cat

this

of

fish

there

dog

these

these

cat

cat

cats

dog

cats
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102Beam Search

<s>

</s>

</s>

</s>

</s>

</s>

</s>

- Neural Machine Translation August 2018



103Best Paths

<s>

</s>

</s>

</s>

</s>

</s>

</s>
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104Beam Search Details

• Normalize score by length

• No recombination (paths cannot be merged)
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105Output Word Predictions
Input Sentence: ich glaube aber auch , er ist clever genug um seine Aussagen vage genug zu halten , so dass sie auf verschiedene Art und
Weise interpretiert werden können .

Best Alternatives
but (42.1%) however (25.3%), I (20.4%), yet (1.9%), and (0.8%), nor (0.8%), ...
I (80.4%) also (6.0%), , (4.7%), it (1.2%), in (0.7%), nor (0.5%), he (0.4%), ...
also (85.2%) think (4.2%), do (3.1%), believe (2.9%), , (0.8%), too (0.5%), ...
believe (68.4%) think (28.6%), feel (1.6%), do (0.8%), ...
he (90.4%) that (6.7%), it (2.2%), him (0.2%), ...
is (74.7%) ’s (24.4%), has (0.3%), was (0.1%), ...
clever (99.1%) smart (0.6%), ...
enough (99.9%)
to (95.5%) about (1.2%), for (1.1%), in (1.0%), of (0.3%), around (0.1%), ...
keep (69.8%) maintain (4.5%), hold (4.4%), be (4.2%), have (1.1%), make (1.0%), ...
his (86.2%) its (2.1%), statements (1.5%), what (1.0%), out (0.6%), the (0.6%), ...
statements (91.9%) testimony (1.5%), messages (0.7%), comments (0.6%), ...
vague (96.2%) v@@ (1.2%), in (0.6%), ambiguous (0.3%), ...
enough (98.9%) and (0.2%), ...
so (51.1%) , (44.3%), to (1.2%), in (0.6%), and (0.5%), just (0.2%), that (0.2%), ...
they (55.2%) that (35.3%), it (2.5%), can (1.6%), you (0.8%), we (0.4%), to (0.3%), ...
can (93.2%) may (2.7%), could (1.6%), are (0.8%), will (0.6%), might (0.5%), ...
be (98.4%) have (0.3%), interpret (0.2%), get (0.2%), ...
interpreted (99.1%) interpre@@ (0.1%), constru@@ (0.1%), ...
in (96.5%) on (0.9%), differently (0.5%), as (0.3%), to (0.2%), for (0.2%), by (0.1%), ...
different (41.5%) a (25.2%), various (22.7%), several (3.6%), ways (2.4%), some (1.7%), ...
ways (99.3%) way (0.2%), manner (0.2%), ...
. (99.2%) </S> (0.2%), , (0.1%), ...
</s> (100.0%)
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106

large vocabularies
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107Zipf’s Law: Many Rare Words

frequency

rank

frequency × rank = constant
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108Many Problems

• Sparse data

– words that occur once or twice have unreliable statistics

• Computation cost

– input word embedding matrix: |V | × 1000

– outout word prediction matrix: 1000× |V |
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109Some Causes for Large Vocabularies

• Morphology
tweet, tweets, tweeted, tweeting, retweet, ...

→morphological analysis?

• Compounding
homework, website, ...

→ compound splitting?

• Names
Netanyahu, Jones, Macron, Hoboken, ...

→ transliteration?

⇒ Breaking up words into subwords may be a good idea
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110Byte Pair Encoding

• Start by breaking up words into characters

t h e  f a t  c a t  i s  i n  t h e  t h i n  b a g

• Merge frequent pairs

t h→th th e  f a t  c a t  i s  i n  th e  th i n  b a g

a t→at th e  f at  c at  i s  i n  th e  th i n  b a g

i n→in th e  f at  c at  i s  in  th e  th in  b a g

th e→the the  f at  c at  i s  in  the  th in  b a g

• Each merge operation increases the vocabulary size

– starting with the size of the character set (maybe 100 for Latin script)
– stopping at, say, 50,000
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111Example: 49,500 BPE Operations

Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly

friendly . the two wanted to talk about the implementation of the

international agreement and about Teheran ’s destabil@@ ising activities

in the Middle East . the meeting was also planned to cover the conflict

with the Palestinians and the disputed two state solution . relations

between Obama and Net@@ any@@ ahu have been stra@@ ined for years .

Washington critic@@ ises the continuous building of settlements in

Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the

peace process . the relationship between the two has further

deteriorated because of the deal that Obama negotiated on Iran ’s

atomic programme . in March , at the invitation of the Republic@@ ans

, Net@@ any@@ ahu made a controversial speech to the US Congress , which

was partly seen as an aff@@ ront to Obama . the speech had not been

agreed with Obama , who had rejected a meeting with reference to the

election that was at that time im@@ pending in Israel .
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Questions?
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113Outline

• Machine Translation: History & Problem Formulation

• Language Model

• Encoder-Decoder NMT Model

• Training & Inference

• Alternative NMT Models
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114Many variants to the standard Encoder-Decoder

• Ensembles

• Coverage and Alignment

• Linguistic Annotation

• Alternative architectures (beyond recurrent architectures)
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Ensembles
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116Ensembling

• Train multiple models

• Say, by different random initializations

• Or, by using model dumps from earlier iterations

(most recent, or interim models with highest validation score)
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117Decoding with Single Model

si-1

ci Context

State

ti-1 ti
Word

Prediction

yi-1

Eyi-1

Selected 
Wordyi

Eyi Embedding

ci-1
the

cat

this

of

fish

there

dog

these

  yi Eyi

si
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118Combine Predictions

.54the

.01cat

.11this

.00of

.00fish

.03there

.00dog

.05these

.52

.02

.12

.00

.01

.03

.00

.09

Model 
1

Model 
2

.12

.33

.06

.01

.15

.00

.05

.09

Model 
3

.29

.03

.14

.08

.00

.07

.20

.00

Model 
4

.37

.10

.08

.02

.07

.03

.00

Model 
Average

.06
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119Ensembling

• Surprisingly reliable method in machine learning

• Long history, many variants:
bagging, ensemble, model averaging, system combination, ...

• Works because errors are random, but correct decisions unique
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alignment and coverage
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121Attention vs. Alignment
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122Guided Alignment

• Guided alignment training for neural networks

– traditional objective function: match output words
– now: also match given word alignments

• Add as cost to objective function

– given alignment matrix A, with
∑
j Aij = 1 (from IBM Models)

– computed attention αij (also
∑
j αij = 1 due to softmax)

– added training objective (cross-entropy)

costCE = −1

I

I∑
i=1

J∑
j=1

Aij log αij
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123Coverage
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124Tracking Coverage

• Neural machine translation may drop or duplicate content

• Track coverage during decoding

coverage(j) =
∑
i

αi,j

over-generation = max
(

0,
∑
j

coverage(j)− 1
)

under-generation = min
(

1,
∑
j

coverage(j)
)

• Add as cost to hypotheses
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125Coverage Models

• Use as information for state progression

a(si−1, hj) = W asi−1 + Uahj + V acoverage(j) + ba

• Add to objective function

log
∑
i

P (yi|x) + λ
∑
j

(1− coverage(j))2

• May also model fertility

– some words are typically dropped
– some words produce multiple output words
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linguistic annotation
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127Example

Words the girl watched attentively the beautiful fireflies
Part of speech DET NN VFIN ADV DET JJ NNS

Lemma the girl watch attentive the beautiful firefly
Morphology - SING. PAST - - - PLURAL

Noun phrase BEGIN CONT OTHER OTHER BEGIN CONT CONT

Verb phrase OTHER OTHER BEGIN CONT CONT CONT CONT

Synt. dependency girl watched - watched fireflies fireflies watched
Depend. relation DET SUBJ - ADV DET ADJ OBJ

Semantic role - ACTOR - MANNER - MOD PATIENT

Semantic type - HUMAN VIEW - - - ANIMATE
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128Input Annotation

• Input words are encoded in one-hot vectors

• Additional linguistic annotation

– part-of-speech tag
– morphological features
– etc.

• Encode each annotation in its own one-hot vector space

• Concatenate one-hot vecors

• Essentially:

– each annotation maps to embedding
– embeddings are added
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129Output Annotation

• Same can be done for output

• Additional output annotation is latent feature

– ultimately, we do not care if right part-of-speech tag is predicted
– only right output words matter

• Optimizing for correct output annotation→ better prediction of output words
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130Linearized Output Syntax

Sentence the girl watched attentively the beautiful fireflies
Syntax tree S

NP

DET

the

NN

girl

VP

VFIN

watched

ADVP

ADV

attentively

NP

DET

the

JJ

beautiful

NNS

fireflies
Linearized (S (NP (DET the ) (NN girl ) ) (VP (VFIN watched ) (ADVP (ADV attentively

) ) (NP (DET the ) (JJ beautiful ) (NNS fireflies ) ) ) )
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alternative architectures
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132Beyond Recurrent Neural Networks

• We presented the currently dominant model

– recurrent neural networks for encoder and decoder

– attention

• Convolutional neural networks

• Self attention
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convolutional neural networks
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134Convolutional Neural Networks

Input Word
Embeddings

K2 Layer

K3 Layer

L3 Layer

• Build sentence representation bottom-up

– merge any n neighboring nodes

– n may be 2, 3, ...
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135Generation

Input Word
Embeddings

K2 Encoding Layer

K2 Encoding Layer

Transfer Layer

K3 Decoding Layer

K2 Decoding Layer

Selected Word

Output Word
Embedding
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136Generation

• Encode with convolutional neural network

• Decode with convolutional neural network

• Also include a linear recurrent neural network

• Important: predict length of output sentence

• Does it work?
used successfully in re-ranking (Cho et al., 2014)
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137Convolutional Network with Attention

(Facebook, 2017)
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138Convolutional Encoder

Input Word
Embeddings

Convolution
Layer 1

Convolution
Layer 2

Convolution
Layer 3

0

0

0

0

0 0

• Similar idea as deep recurrent neural networks

• Good: more parallelizable

• Bad: less context when refining representation of a word
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139Convolutional Decoder

0

Decoder 
Convolution 1

Output Word
Embedding

Decoder 
Convolution 2

Selected 
Word

• Convolutions over output words

• Only previously produced output words
(still left-to-right decoding)
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140Convolutional Decoder

0

Input Context

Decoder 
Convolution 1

Output Word
Embedding

Decoder 
Convolution 2

Selected 
Word

• Inclusion of Input context

• Context result of attention mechanism (similar to previous)
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141Convolutional Decoder

0

Input Context

Decoder 
Convolution 1

Output Word
Predictions

Output Word
Embedding

Decoder 
Convolution 2

Selected 
Word

• Predict output word distribution

• Select output word
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self-attention
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143Attention

Encoder States

Attention

Input Context

Hidden State

• Compute association between last hidden state and encoder states
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144Attention Math

• Input word representation hk

• Decoder state sj

• Computations

ajk =
1

|h|
sjh

T
k raw association

αjk =
exp(ajk)∑
κ exp(ajκ)

normalized association (softmax)

self-attention(hj) =
∑
k

αjκhk weighted sum
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145Self-Attention

• Attention
ajk =

1

|h|
sjh

T
k

• Self-attention
ajk =

1

|h|
hjh

T
k
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146Why?

• Refine representation of word with related words
making ... more difficult refines making

• Good: more parallelizable than recurrent neural network

• Good: wide context when refining representation of a word
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147Stacked Attention in Decoder

Input Word
Embeddings

Decoder
Layer 2

Output Word
Prediction

Selected 
Output Word

Output Word
Embedding

Self Attention
Layer 1

Self Attention
Layer 2

Decoder
Layer 1
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Questions?
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