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Abstract

Back-translation is a data augmentation tech-
nique that has been shown to improve model
quality through the creation of synthetic train-
ing bitext. Early studies showed the promise
of the technique and follow on studies have
produced additional refinements. We have
undertaken a broad investigation using back-
translation to train models from 60 languages
into English; the majority of these languages
are considered moderate- or low-resource lan-
guages. We observed consistent gains, though
compared to prior work we saw conspicuous
gains in quite a number of lower-resourced lan-
guages. We analyzed differences in translations
between baseline and back-translation models,
and observed many indications of improved
translation quality. Translation of both rare and
common terms is improved, and these improve-
ments occur despite the less natural synthetic
source-language text used in training.

1 Introduction

Back-translation was applied to statistical machine
translation at least as far back as 2009 (Bertoldi and
Federico, 2009) with modest gains being reported.
Sennrich et al. (2016) applied back-translation
in NMT and obtained gains of 2-3 BLEU for En-
glish/German and about 4 BLEU in Turkish to En-
glish. This renewed interest in back-translation
and it became a popular technique used in WMT
evaluations, particularly in high-resource settings.

Research continued in back-translation, with a
paper by Hoang et al. (2018) who studied itera-
tive back-translation, where the reverse model is
itself improved through back-translation. In low-
resource scenarios they observed gains of about
1.5 BLEU, however, the marginal gain of repeated
iterations is small. Many studies conducted ex-
periments where a high resource language pair
was sampled to artificially create a “low” resource
dataset, however, we are concerned that such sim-
ulations are not a good proxy due to dissimilar

scripts, atypical subject matter, and noisy training
data common in low-resource bitext. A few studies
have looked look at bona fide low-resource lan-
guage pairs. One example is Xia et al. (2019) who
found 3+ BLEU point gains in several languages,
and even an 8 point gain in Azerbaijani to English.

Other influential works in back-translation in-
clude: Edunov et al. (2018) who investigated the
optimal amount of monolingual data to use in high-
resource pairs; Imankulova et al. (2017) who ex-
amined filtering out lower-quality synthetic bitext
pairs; Marie et al. (2020) who examined weight-
ing synthetic exemplars differently than human-
produced bitext; and Edunov et al. (2020) and
Graça et al. (2019) who studied use of sampling.

Our goal in this study is to reexamine the use of
back-translation through extensive experimentation
in moderately and low-resourced languages. We be-
lieve that this is the largest study to date in terms of
the number of languages for which back-translation
effectiveness has been analyzed. We describe our
experimental setup in Section 2. In Section 3 we
compare back-translation to a baseline model for
60 source languages. An analysis of these results is
provided in Section 4. In Section 5 we examine the
amount of synthetic data to use in six languages.
And in Section 6 we report on experiments using
repeated back-translation in 13 languages.

2 Methods

In this section we describe model training and the
evaluation datasets we use for evaluation.

2.1 Training

Neural machine translation models were trained
with the Transformer (Vaswani et al., 2017) us-
ing Amazon’s Sockeye (v2) toolkit (Apache-2.0)
(Hieber et al., 2020). Data was obtained from pub-
lic sources, in particular, bitext downloadable from
the OPUS portal (Tiedemann, 2012). Preprocess-
ing steps included: running the Moses tokenizer;
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Figure 1: Steps to conduct back-translation, illustrated for a Zulu-to-English model.

removal of duplicate lines; and, learning of sub-
word units using the subword-nmt toolkit. Case
was retained.

Key hyperparameters include: use of 6 layers
in both encoder and decoder; 1,024 dimensional
embeddings; 16 attention heads; 4,096 hidden
units per layer; 30,000 subword byte pair encod-
ing (BPE) unit, separately in source and target lan-
guages; batch size of 1,024; the Adam optimizer
with an initial learning rate of 2×10−4. The models
were thus trained with a straightforward implemen-
tation of the Transformer.

To perform back-translation we used monolin-
gual English text from the web-crawled news por-
tion of the Leipzig corpus1. This consisted of 7
million sentences of web-scraped news from 2014
to 2020.2 There are 1 million sentences available
from each year. The training process with back-
translation is depicted in Figure 1. In Step 1 a re-
verse model is trained from the ultimate target lan-
guage (here always English) to the ultimate source
language. In Step 2 inference is performed using
the reverse model on monolingual text. Finally, in
Step 3 a forward model is trained, using a concate-
nation of the original human-produced bitext and
the synthetic bitext from Step 2. This model is inde-
pendently trained; the only difference compared to
a baseline model (labelled ‘Base’ in Table 1 below)
is that the training data has been supplemented.

2.2 Evaluation

The FLORES-101 (Goyal et al., 2022) dataset was
created by Facebook Research using content from

1
https://wortschatz.uni-leipzig.de/en/download

2Experiments in Sections 5 & 6 use slightly different data.

Wikipedia (e.g., news, travel guides). Translations
are from English into 100 other languages, with
an emphasis on obtaining translations in lower-
resourced languages. 3,001 sentences were split
into test, devtest, and dev partitions; we report re-
sults on the 1012 sentence test set.

TICO-19 (Anastasopoulos et al., 2020) was cre-
ated as a domain-specific test set to support cus-
tomization and evaluation of translation models
that would be useful during the SARS-COV-2 pan-
demic. English content from PubMed and various
Wikipedia.org projects was translated into 9 higher-
resourced languages and 26 lower-resourced lan-
guages. The data is provided as test (2,100 sents)
and dev (971 sents) partitions, though we use all
3,071 sentences for testing. Translations are avail-
able in 19 of the 60 languages that we studied.

Samples of flores101 and tico19 sentences can
be found in the Appendix. Translations were scored
using case-insensitive BLEU scores (Papineni et al.,
2002) calculated with sacrebleu (Post, 2018).3

3 Results

Scores for the baseline models (Base) and for mod-
els trained using back-translation (BT) are shown
in Table 1.

The top tier of languages experience gains of 1-2
BLEU points (∼ 4% relative gain); the middle tier
sees gains averaging about 5 BLEU (23% relative
gain); and, the least resourced languages see av-
erage gains of about 8 BLEU (70% relative gain).
Languages such as Burmese, Gujarati, Kannada,
and Khmer attain roughly double the score of their

3BLEU+case.lc+numrefs.1+smooth.exp+tok.13a+version.1.4.14

8167

https://wortschatz.uni-leipzig.de/en/download


flores101 tico19
Code Language Bitext M2M Base BT ∆ % M2M Base BT ∆ %
heb Hebrew 33.2M 37.9 44.0 45.4 +1.4 +3.2%
srp Serbian 32.3M 40.7 42.8 43.4 +0.6 +1.4%
ind Indonesian 26.4M 39.6 42.4 44.3 +0.9 +2.1% 43.9 45.1 46.5 +1.4 +3.1%
slv Slovenian 25.2M 33.4 35.3 36.3 +1.0 +2.8%
slk Slovak 22.1M 37.6 38.3 39.7 +1.4 +3.7%
est Estonian 21.0M 35.8 37.7 38.5 +0.8 +2.1%
kor Korean 15.0M 25.6 29.3 31.0 +1.7 +5.8%
lit Lithuanian 14.9M 32.6 33.0 35.0 +2.0 +6.1%
vie Vietnamese 14.3M 33.2 35.5 36.7 +1.2 +3.4%
lav Latvian 14.2M 34.3 34.9 37.8 +2.9 +8.3%
fas Farsi 11.4M 29.9 35.1 37.6 +2.5 +7.1% 30.1 34.3 35.7 +1.4 +4.1%
bos Bosnian 10.8M 37.6 39.0 41.2 +2.2 +5.6%
swh Swahili 9.9M 34.2 40.4 42.8 +2.4 +5.9% 33.0 38.5 40.8 +2.3 +6.0%
ukr Ukrainian 9.0M 36.3 36.9 39.3 +2.4 +6.5%
hin Hindi 8.7M 34.8 35.2 40.9 +5.7 +16.2% 42.6 45.5 49.5 +4.0 +8.8%
tgl Tagalog 6.3M 27.9 40.3 43.4 +3.1 +7.7% 40.9 49.6 54.8 +5.2 +10.5%

msa Malay 6.1M 39.4 35.9 39.6 +3.7 +10.3% 45.6 41.2 45.3 +4.1 +10.0%
cat Catalan 5.2M 43.4 40.3 43.5 +3.2 +7.9%
isl Icelandic 5.0M 29.5 31.3 33.7 +2.4 +7.7%

mkd Macedonian 4.8M 40.3 40.2 41.6 +1.4 +3.5%
mlt Maltese 4.2M – 49.2 53.5 +4.3 +8.7%
ben Bengali 4.0M 28.6 27.3 33.3 +6.0 +22.0% 33.9 30.7 37.8 +7.1 +23.1%
afr Afrikaans 3.0M 52.7 52.8 53.8 +1.0 +1.9%
xho Xhosa 3.0M 18.5 30.9 35.4 +4.5 +14.6%
zul Zulu 2.8M 17.9 30.5 35.2 +4.7 +15.4% 24.7 33.8 38.9 +5.1 +15.1%
sna Shona 2.5M – 20.5 23.4 +2.9 +14.1%
gle Irish 2.4M 1.2 34.4 37.6 +3.2 +9.3%
hau Hausa 2.2M 13.9 25.2 29.8 +4.6 +18.3% 16.9 25.9 31.3 +5.4 + 20.8%
tam Tamil 1.7M 10.8 20.1 28.6 +8.5 +42.3% 11.6 19.7 29.4 +9.7 +49.2%
urd Urdu 1.7M 24.6 23.6 29.4 +5.8 +24.6% 26.0 26.5 31.1 +4.6 +17.4%
yor Yoruba 1.4M 4.8 11.3 14.9 +3.6 +31.9%
kat Georgian 1.4M 16.1 17.5 22.3 +4.8 +27.4%
mal Malayalam 1.3M 22.9 19.0 31.7 +12.7 +66.8%
azj Azerbaijani 1.2M 8.7 13.5 18.5 +5.0 +37.0%
jav Javanese 1.2M 23.0 12.4 20.0 +7.6 +61.3%
mar Marathi 1.1M 23.5 17.9 29.1 +11.2 +62.6% 24.0 19.5 30.0 +10.5 +53.8%
nya Nyanja 1.1M – 15.6 20.4 +4.8 +30.8%
bel Belarusian 1.1M 15.2 14.1 16.8 +2.7 +19.1%
hye Armenian 983k 22.1 25.4 32.7 +7.3 +28.7%
amh Amharic 950k 14.3 19.8 29.5 +9.7 +49.0%
tel Telegu 908k – 23.6 35.9 +12.3 +52.1%
npi Nepali 787k 14.0 16.5 29.9 +13.4 +81.2% 23.9 20.2 35.7 +15.5 +76.7%
som Somali 786k 3.3 14.6 21.5 +6.9 +47.3% 3.0 8.8 12.0 +3.2 +36.4%
cym Welsh 772k 26.7 40.5 50.8 +10.3 +25.4%
lin Lingala 768k 4.0 11.6 19.2 +7.6 +65.5% 6.5 9.2 15.9 +6.7 +72.8%
lug Ganda 768k 4.0 6.3 11.2 +4.9 +77.8% 8.6 9.3 15.9 +6.6 +71.0%
mya Burmese 734k 8.4 10.3 19.8 +9.5 +92.2% 12.6 11.1 19.9 +8.8 +79.3%
nso Pedi 718k 4.0 21.8 31.8 +10.0 +45.9%
glg Galician 692k 38.2 33.5 37.0 +3.5 +10.4%
ceb Cebuano 691k 21.4 25.6 32.6 +7.0 +27.3%
orm Oromo 667k – 4.5 7.3 +2.8 +62.2% – 5.6 9.6 +4.0 + 71.4%
kaz Kazakh 635k 5.4 16.5 25.7 +9.2 +55.8%
khm Central Khmer 634k 14.3 10.5 19.8 +9.3 +88.6% 21.4 14.6 26.1 +11.5 +78.8%
ibo Igbo 568k 12.5 14.3 19.7 +5.4 +37.8%

mon Mongolian 559k 15.8 10.8 18.9 +8.1 +75.0%
guj Gujarati 410k 1.6 14.6 29.4 +14.8 +101.3%
kan Kannada 390k 0.8 8.3 18.7 +10.4 +125.3%
tgk Tajik 386k – 9.7 17.0 +7.3 +75.3%
pan Panjabi 326k 16.3 16.4 27.4 +11.0 +67.1%
kir Kirghiz 318k – 7.6 13.4 +5.8 +76.3%

Table 1: BLEU scores on the flores101 and tico19 benchmarks for our baseline bilingual models (Base), back-
translation models trained with the addition of 7M back-translated English sentences (BT), and Facebook’s M2M
model. ∆ shows the absolute BLEU improvement between BT and Base; % shows relative gain. The rows are
sorted by training data size for Base (column: Bitext), where the top group has ten million or more lines of training
bitext, middle group has between one to ten million lines, and bottom group has less than 1 million lines.
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baseline models. While some languages just im-
prove a poor model to a slightly less poor model
(e.g., Oromo, 4.5 to 7.3, +62%), several cases are
languages that move from a score of 10 to 15 to a
score between 20 and 30, an adjustment from poor
to good.

Across the different languages the gains on the
tico19 benchmark track gains on the flores101 test
set. This indicates that we did not just get lucky
in picking good monolingual data to use for back-
translation, since the synthetic bitext works well on
both the news/travel text (flores101) and the health
domain benchmark (tico19).

On both tests sets, in every instance, back-
translation conferred gains. There is a strong in-
verse relationship between the amount of training
data used in the baseline model and the improve-
ment in BLEU score with back-translation. This is
clear in Figure 2 where the less-resourced language
are plotted towards the left. It was not clear that
models in the impoverished languages would im-
prove given the questionable quality of their reverse
models, yet large gains are indeed seen.

We ran a bootstrap resampling test (Koehn,
2004) comparing BT with Base: with the excep-
tion of Serbian, all BLEU improvements in BT are
statistically significant (p < 0.05). This expands
the observation of (Guzmán et al., 2019) which
measured large BT gains for an earlier version of
flores101 consisting of Nepali and Sinhala.

To give context to our baseline models we also
report performance using the 1.2 billion parameter
M2M100 model released by Facebook (Fan et al.,
2022), which was trained on 7.5 billion sentence
pairs. Note that our bilingual models often outper-
form the multilingual M2M.

In Figure 3 we show examples of translations.
Consider the first example, about Portuguese ex-
plorer Vasco da Gama. In the Kazakh training data,
the explorer’s name never occurs, neither in Kazakh
nor English. But in the synthetic bitext, the name
appears eight times in the monolingual English,
and it is correctly back-translated in Kazakh once,
along with a couple of partially correct translations
and errors. This is apparently enough to learn how
to decode the name properly.

4 Analysis of Results

We now provide various analyses to better under-
stand the results in Section 3. Specifically, we are
interested to learn why and how back-translation

Figure 2: Gains in BLEU on flores101 using back-
translation. The horizontal axis (log scale) is the amount
of training data in the Base model. To improve readabil-
ity only one out of every three languages is plotted.

(BT) improves upon the baseline (Base).

Are the improvements in BT consistent across
evaluation metrics? Yes. The histograms in Fig-
ure 4 summarize the translation quality in terms
of BLEU, chrF (Popović, 2015), and TER (Snover
et al., 2006). The BLEU plot corresponds to re-
sults in Table 1, and the rightward shift of the
BT curve compared to the Base curve indicates
the general improvements in BLEU. Both the chrF
plot and TER plot shows similar trends of increas-
ing chrF score and decreasing TER score for BT.
The improvements are especially pronounced in
the low chrF and high TER regions, consistent with
our finding about BLEU improving most for low-
resource languages.

What kinds of words are translated correctly?
Figure 5 shows the precision/recall of out-of-
vocabulary (OOV) and high-frequency words, cal-
culated using the compare-mt tool (Neubig et al.,
2019). We define OOV words as words in the test-
set that do not occur in the training text of Base,
while frequent words are those with over 1,000
occurrences. For this analysis, MT hypotheses
and references in English were processed with the
Moses tokenizer (Koehn et al., 2007). We observed
improvements in both precision and recall on both
classes of words. Figure 3 gave an example of
improvement in OOV translation, but in Figure 5
we see that BT improves word precision and recall
across the board. In fact, the high-frequency words
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Figure 3: Example translations. Shown are the source sentence, the reference, the baseline model translation, and
the translation when back-translation is utilized.

Figure 4: Visualization of Base and BT system scores over the 60 flores101 testsets. For easier comparison, the
BLEU/ChrF/TER scores are tallied into a histogram, then converted to a density plot by kernel density estimation.
Note that the scores are generally bimodal. Our explanation of the bimodality is based on the fact that 20-25% of
the languages we studied have between 1M and 3M lines of training data; below 1M lines the scores tend to be
below 20 BLEU, and above 3M lines the scores tend to be over 30 BLEU. There simply are not as many languages
with quantities of training data in the intermediate range. When comparing BT against Base, there is a rightward
shift of improving BLEU and chrF scores and a leftward shift of improving (i.e., decreasing) TER.

lead to the most BLEU gain.
We also conduct a word accuracy analysis that

groups words by part-of-speech tags. The English
reference and hypotheses are tagged with CoreNLP
(Manning et al., 2014), then the respective preci-
sion and recall values are calculated. We aver-
age over the 60 testsets and report the resulting F1

scores in Table 2. We note that the F1 measure
increases across all parts-of-speech for BT, with
the largest gains in nouns, particles, and verbs.

How accurate are the reverse models? Does
the reverse model need to be highly accurate for
back-translation to perform well? This is a ques-
tion that is especially pertinent to low-resource con-
ditions. We measure the accuracy of the reverse
model that synthesized the 7 million lines of BT
data. Since the reference is in a non-English lan-

POS Share F1 %
CC: coord. conjunction 3.3% 0.88 +3%
CD: card. number 1.8% 0.80 +6%
DT: determiner 9.5% 0.67 +7%
IN: preposition 12.3% 0.61 +8%
JJ∗: all adjectives 7.7% 0.56 +12%
MD: modal 1.1% 0.54 +8%
NN∗: all nouns 28.0% 0.61 +14%
PRP: personal pronoun 1.9% 0.61 +10%
RB∗:: all adverbs 4.3% 0.49 +9%
RP: particle 0.2% 0.29 +19%
TO: to 1.3% 0.72 +5%
VB∗: all verbs 14.5% 0.47 +14%
WDT: Wh-determiner 0.6% 0.46 +11%
WP: Wh-pronoun 0.2% 0.52 +13%
WRB: Wh-adverb 0.2% 0.56 +10%
All other tags 13.1% 0.78 +2%

Table 2: F1 measure of BT word accuracy by POS tag.
% indicates the percent improvement over F1 of Base.
Share is the proportion of the tag in the flores101 testset.
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Figure 5: Precision and Recall of OOV (top) and Fre-
quent (bottom) words, aggregated over the 60 flores101
testsets.

guage, we compute BLEU using sentence-piece to-
kenization (spBLEU) for consistency of evaluation
across languages. Figure 6 is a scatterplot where
the x-axis is the BLEU score of a forward baseline
model (e.g., zul-eng) and the y-axis is the spBLEU
of the reverse model (e.g., eng-zul) trained on the
same bitext. For most language-pairs, we see a
strong correlation between the two BLEU scores,
which is reasonable because both forward and re-
verse models are trained on the same bitext. For
about a fifth of the language pairs, reverse model
spBLEU is significantly low (e.g., in the range 0-
10) compared to forward model BLEU. These are
mostly models for Indian languages (tam, kan, mal)
or languages that may be challenging to segment
(mya, khm); nevertheless, the BT gains are still
rather impressive in these languages. These results
suggest that the reverse model does not need to be
highly accurate for back-translation to be effective.

Figure 6: Scatterplot of forward and reverse model ac-
curacies on flores101.

What does the BT bitext look like? We attempt
to characterize the BT training data by comparing
statistics on the foreign and English sides. Figure 7
(top) shows the out-of-vocabulary (OOV) rate (by
word types) of the baseline bitext compared to the
backtranslated bitext (which includes the baseline
bitext). We observe that the English OOV rate on
the flores101 test set is on average 4.5% for Base,
and this drops significantly to 1.5% for BT. This
shows that the BT data improves coverage on the
flores101 vocabulary. Previous work has shown
that one explanation for back-translation’s success
is the improved coverage in domain mismatch con-
ditions (Dou et al., 2020). We believe there is
certainly some of this effect, but the improvements
in both flores101 and tico19 imply that domain
coverage is not the only reason for improvement.

The OOV rate on the foreign side presents an ad-
ditional explanation. We use the Moses tokenizer
and other language-specific tokenizers for this anal-
ysis. While the OOV rate on the foreign side is
higher (10%), there is still considerable reduction
by BT (7.5%). The only way for OOV rate to re-
duce on the foreign side is for the reverse model to
generate via subword unit combinations new words
that were previously not seen in the original bitext.

Finally, we train language models (4-gram kenlm
(Heafield, 2011)) on both sides of the bitext for
Base and BT, and measure the perplexity on flo-
res101 validation set. Here we use subwords as
tokens to ameliorate the presence of OOV words,
which complicates perplexity calculations. Figure 7
(bottom) shows that perplexity of a 4-gram trained
Base English text is approximately 110 on average,
and it drops to 100 for a 4-gram trained on BT En-
glish text. Surprisingly, the perplexity increases on
the foreign side, growing from 75 to 85.

For perplexity, these are minor differences, but
we make some conjectures: (1) The small change
in perplexity is likely due to the BT data being rel-
atively broad domain; if the BT data were selected
to be very similar to the test set, the perplexities
would drop much more significantly. (2) The up-
ward trend in perplexity for BT on the foreign side
suggests that the synthesized foreign text might not
be wholly natural (see Appendix D). These texts
do not improve monolingual perplexity, yet when
paired as bitext they do improve MT accuracy.

Summary: BT improvements over Base are mea-
sured on multiple metrics, and translation improves
across the board on all word types. The reverse
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Figure 7: OOV rate (top row) and perplexity (bottom)
of BT data on flores101, aggregrated over 60 languages

model does not need to be highly accurate and the
BT bitext (if broad-domain) does not need to be
specifically matched to the test domain for BT to
work effectively.

5 Monolingual Data Size

Some have studied the effect of the amount of
monolingual text used in creating synthetic bitext.
A common heuristic is to use a small multiple of
the human-produced training bitext, for example
two or three times the amount. We wanted to assess
this ourselves, and we did this in six languages that
varied in the amount of Base training data, from
300k lines of bitext up to 11 million.

Figure 8: Comparing the amount of monolingual text
used in back-translation.

In Section 3 we used 7 million sentences per lan-
guage from the web-crawled English news portion
of the Leipzig corpus. For these new experiments
we expand to 14 million sentences from the years
2005 to 2020, training six additional models per
language, each using differing amounts of mono-
lingual text. When back-translation is used, we
choose the most recent data up to our desired limit.

Figure 8 plots BLEU scores for six languages:
Bengali, Farsi, Hausa, Kazakh, Marathi, and Pan-
jabi. They vary in the amount of Base bitext from
about 300k lines (Panjabi) up to 11 million lines
(Farsi). At the left is the no back-translation con-
dition, and proceeding left to right, larger amounts
of synthetic bitext are used.

We make several observations from the plot.
First, consistent with Table 1, the three least re-
sourced languages show the greatest gains. Second,
even the smallest amount of synthetic data consid-
ered, 500k sentences, produced tangible benefit.
And third, the four rightmost conditions (i.e., 4, 7,
10, and 14 million) are best, though there is little
difference among them. Our earlier choice of 7
million sentences was felicitous.

We conclude that using even relatively small
amounts of data can be effective, and that the risk
of using too much data is low. For example, with
the use of 14 million lines of synthetic bitext, the
Panjabi model is using 40x more synthetic data
than original human-produced bitext, and this still
conveys large gains compared to using less data,
and is nearly optimal compared to other choices.

6 Repeated Back-Translation

Earlier work in iterative back-translation (Hoang
et al., 2018) showed small gains when first im-
proving the reverse model, and then using that im-
proved model to generate the final synthetic bitext.
It makes sense that an improved synthetic bitext
should have fewer errors and lead to an ultimately
better model. We decided to investigate this method
in thirteen languages, using just one attempt to im-
prove the reverse model. This requires monolingual
text in the source language to create synthetic data
for the reverse model. For non-English text we
used data from the OSCAR 22.01 corpus (Abadji
et al., 2022), which was filtered to remove possi-
bly problematic text4 and then performed sentence
splitting using ersatz (Wicks and Post, 2021).

4Anything marked as adult, footer, header, noisy,
short_sentences, or tiny.
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flores101 tico19
Lang Bi/Monotext RBT ∆ RBT ∆
tam 1.7M 5.4M 28.6 +0.3 29.4 -0.3
urd 1.7M 3.4M 29.4 0.0 31.1 -0.2
kat 1.4M 4.3M 22.3 +1.3
azj 1.2M 4.0M 18.5 +0.4

amh 950k 143k 29.5 +0.8
tel 908k 1.7M 35.9 +0.8

mya 734k 339k 19.8 +0.7 19.9 +1.0
kaz 635k 3.0M 25.7 +2.0
khm 634k 171k 19.8 -0.9 26.1 +0.9
mon 559k 1.2M 18.9 +1.8
guj 410k 1.1M 29.4 +2.8
kan 390k 946k 18.7 +4.4
tgk 386k 1.7M 17.0 +3.3

Table 3: Results for repeated back-translation (RBT).
Resultant BLEU scores are shown for the flores101 and
tico19 benchmarks, along with the change in BLEU
compared to the BT model from Table 1.

This is a somewhat less controlled experiment,
as the amount of monolingual text in OSCAR
varies by the language. After the filtering men-
tioned above we used all of the remaining text.

Our results are shown in Table 3. On flores101,
positive gains were seen in 11 of 13 cases (a tie
for Urdu; a loss in Khmer). Changes tended to
be small, except in the lesser resourced languages,
where gains of between 2.0 and 4.4 points were
achieved. On tico19, the changes were relatively
small, with two minor losses (Tamil and Urdu), and
two gains of about a point (Burmese and Khmer).

Back-translation requires training two separate
models, one after the other. However, with the extra
step of improving the reverse model, we must train
a third model. Based on these results, the added
expense of improving the reverse model is likely
only worthwhile for languages with less than one
million lines of human-produced bitext.

7 Related Work

BT for low-resource languages: Most papers
on this topic examines some aspect of BT with ex-
periments on specific low-resource languages, e.g.:
Telegu (Dandapat and Federmann, 2018); Gujarati
(Bawden et al., 2019); Lithuanian, Gujarati (Xu
et al., 2019); Tagalog, Swahili, Somali, Turkish
(Niu et al., 2019); Swahili (Sánchez-Martínez et al.,
2020); Bribri (Feldman and Coto-Solano, 2020);
Vietnamese (Li et al., 2020); Tamil, Inuktitut (Chen
et al., 2020). Our contribution is orthogonal in that
we have an expansive exploration over 60 moderate
and low-resource languages.

Two recent survey papers on low-resource trans-
lation (Ranathunga et al., 2021; Haddow et al.,

2022) mention the importance of data augmen-
tation and back-translation in particular, though
neither highlights the outsized impact of back-
translation compared to higher resourced settings.

BT variants: Although we use only the most sim-
ple BT technique, there are many advanced variants
that may be interesting as future work. In addition
to the papers on sampling, filtering, and weighting
mentioned in the introduction, BT can be improved
with meta-learning (Pham et al., 2021), translitera-
tion (Karakanta et al., 2018), data selection (Soto
et al., 2020), tagging (Caswell et al., 2019), lexi-
cal/syntactic diversity (Burchell et al., 2022).

BT for multilingual models: We focus on bilin-
gual models, but BT for multilingual models is an
area of growing interest. Fan et al. (2022) observed
consistent, yet small gains in multilingual models
(seemingly less than 2 BLEU, cf. their Figs. 4 &
6). Our experiments were exclusively bilingual and
to-English, with larger gains in low-resource con-
ditions, though direct comparison is not possible.

In a follow-on study (NLLB Team et al., 2022),
Meta develop a larger version of the FLORES data
in 200 languages, and built a massively multilin-
gual many-to-many model. As part of that wide-
ranging work, they conducted experiments with
back-translation (their Sec. 6.4.1). Their best re-
sults used statistical MT to generate the synthetic
bitext. Consistent with our results in translation to
English, they found gains largest in “very low” re-
source languages (50.9 vs. 46.1 chrF++), but using
multilingual mixture-of-experts models.

8 Conclusions

By revisiting back-translation for an expansive list
of 60 mid- and low-resource languages we have
come to a better understanding of the landscape.
We found that:

• Back-translation improves performance in
moderately resourced languages, but is signifi-
cantly more effective in improving translation
quality in low-resource languages with less
than 1 million lines of training bitext.

• Translation of rare terms is improved due to
increased lexical coverage in the synthetically
generated bitext; however, translation of fre-
quently occurring terms is also improved.

• Even when initial models are of low quality,
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and the synthetic bitext contains noise, signifi-
cant gains still occur.

• The risk of using too much synthetic data is
low.

• Repeated back-translation imparts only minor
gains, except in some of the least resourced
cases we studied.
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Limitations

Aside from the reverse models used in back-
translation (which we did analyze in Section 4),
we only studied translation of language pairs into
English. Using data augmentation techniques like
back-translation where English is not the target lan-
guage, or is neither the source or target language is
certainly worthy of study, but was out of scope in
the present work. We did however, include many
source languages that are typologically different
from English (see Table 8 in the Appendix).

In order to study the effectiveness of BT in a
large number of languages we relied on extant mul-
tilingual datasets, namely flores101 and tico19. The
direction of human translation when building these
datasets was from English into another language.

We did not run repeated trials on our experi-
ments. Many models required training for a cou-
ple of GPU-weeks on V100s, and additional trials
would have added significant computational ex-
pense. We believe the trends we have identified are
sufficiently clear and supported by the statistical
analysis in Section 4.

Ethics Statement

Our goal in this work is to contribute to an un-
derstanding of how and when back-translation can
be successfully employed when translating out of
moderate- and low-resource languages. We be-
lieve that improving translation where English is
the target language has utility both for its 1.5 bil-
lion L1 and L2 speakers globally, as well as for
those non-English speakers whose content can be
made accessible to additional communities.

State-of-the-art systems will make errors, in-
cluding failing to resolve ambiguity, mistranslat-
ing proper names, hallucinations, subject-verb dis-
agreement, among others. These errors could
lead to harms if automated translations are used
injudiciously by end users. Translation in low-
resource conditions is inherently error-prone, how-
ever, based on our results, we believe that using
back-translation will often lead to more robust
translations.
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A Testset Examples

Examples from the flores101 test partition are
shown in Table 4. The text is rich in named-entities
and multiword expressions. Examples from tico19
are shown in Table 5. The language contains ter-
minology specific to the medical and public health
communities, and some texts are written in a scien-
tific style.

B Correlation between flores101 and
tico19

In Section 3 we mentioned that the relative gain
on the public-health related tico19 dataset tracked
the improvement seen on flores101. Figure 9 is
a scatterplot of the relative gains of both datasets.
We calculated Pearson’s correlation coefficient to
be 0.979.

C Can we find features that quantitatively
explain BT improvements?

We attempt to define features x for each language-
pair and build a glassbox regression model to pre-
dict y, defined as the percentage improvement
when comparing BT BLEU with Base BLEU (e.g.,
the column % in Table 1). The goal is to find
explainable features that predict when BT improve-
ment will be large or small. As a glassbox model,
we use the Explainable Boosting Machine (EBM),

Figure 9: Scatterplot of relative gain on tico19 vs. flo-
res101 for BT model.

which is introduced in (Lou et al., 2012) and imple-
mented in Nori et al. (2019):

g(y) = β0 +
∑

j

fj(xj) (1)

Here, g is a link function (identity for regression),
xj is a feature we manually define, and fj the shape
function for feature xj that is learnt through bag-
ging and gradient boosting. The advantage of EBM
over conventional linear regression is that the fj
can be of arbitrary shape (leading to low mean-
squared error) and yet can be easily interpretable
(similar to decision trees).

We define the following features:

• train_token: number of tokens for training,
in millions

• oov_type: the OOV rate, by type

• tt_ratio: type-to-token ratio, number of dis-
tinct word types divided by number of tokens
(computed on the testset)

• perplexity: perplexity of the aforemen-
tioned 4-gram language model

Each feature is prefixed with (en,fr) to indicate
that it is computed on the English or foreign side,
respectively. Additionally, each feature is suffixed
with (1, 2) to indicate that it is computed on Base
(1) or BT (2).

We have available only 60 "samples" for EBM:
a random 85% is used for fitting the EBM and
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The JAS 39C Gripen crashed onto a runway at around 9:30 am local time (0230 UTC) and exploded, closing the airport to
commercial flights.
Around 11:29, the protest moved up Whitehall, past Trafalgar Square, along the Strand, passing by Aldwych and up Kingsway
towards Holborn where the Conservative Party were holding their Spring Forum in the Grand Connaught Rooms hotel.
Nadal’s head to head record against the Canadian is 7–2.

Table 4: Several examples from flores101. Only the English text is shown.

In ca 14% cases, COVID-19 develops into a more severe disease requiring hospitalisation while the remaining 6% cases
experience critical illness requiring intensive care.
On 11 March 2020, the Director General of the World Health Organization (WHO) declared COVID-19 a pandemic.
Patients with severe respiratory symptoms have to be supported by extracorporeal membrane oxygenation (ECMO), a modified
cardiopulmonary bypass technique used for the treatment of life-threatening cardiac or respiratory failure.

Table 5: Several examples from tico19. Only the English text is shown.

15% for test. While the sample size is small, the
model is simple and the coefficient of determina-
tion (R2) on the test set is a reasonable 0.7. We
show the EBM interpretation results in Figure 10.
According to this model, the en_train_token_2
and fr_oov_type_1 are the top two features for
predicting the improvement in BLEU (y). A visu-
alization of the the shape functions show that low
values of en_train_token_2 lead to high score
(high y); this coincides with the previous obser-
vation that lower-resourced languages saw more
improvements in BLEU. The shape function for
fr_oov_type_1 shows an interesting step func-
tion at around 10, meaning that systems with a
foreign word OOV rate greater than 10% had a
large amount to gain in BLEU.

We should note that this EBM analysis only
shows correlation, not causation.

D Quality in Reverse Models

In Section 4 we mentioned that back-translation
can still be effective despite significant noise in
the reverse models. In fact, in some languages,
significant numbers of exact match hallucinations
are produced. Some frequently repeated lines from
the Javanese synthetic bitext are listed in Table 6.

Detecting and filtering out implausible sentence
pairs is one approach to mitigate this problem
Imankulova et al. (2017), however, in our work
we simply removed any duplicates, so that at most
one spurious example remained instead of possi-
bly thousands. Despite the residual noise, back-
translation is remarkably effective in these low-
resource languages. In Table 7 we list the number
of unique lines of back-translated text (i.e., on the
non-English side) for certain languages in which
we observed this problem.

Figure 10: EBM: explaining when BT improves the
most. The top figure shows which features are most
important in the EMB. The bottom two figures are ex-
ample shape functions.

E Computational Expense

Our computing infrastructure consisted of a mix of
NVIDIA V100 32GB and A100 40GB machines.
We estimate that model training and decoding re-
quired 41,000 GPU-hours for the experiments re-
ported in this paper. We are not able to estimate
the actual carbon footprint incurred due to many
factors involved, but we can estimate it for a given
scenario as follows. If we take 250 watts (the rating
for a V100), that is 10.25 MWh. If we assume a
CO2e emission of 432 kg/MWh, we end up with:

10.25 MWh
1

× 432 kg
MWh

× 1 ton
907.19 kg

= 4.9 tons (2)
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Count Sentence
6,784 ]]]] iku kecamatan ing Kabupaten Sumba Tengah Propinsi Nusa Tenggara Wétan.

GT: ]]]] is a district in Central Sumba Regency, East Nusa Tenggara Province.
6,684 Motorola C115 ya iku tilpun sélulèr kang diprodhuksi déning pabrikan Motorola.

GT: Motorola C115 is a mobile phone produced by Motorola.
1,528 Kutha iki dumunung ing sisih kidul.

GT: The city is located in the south.
1,463 Nokia N80 ya iku tilpun sélulèr kang diprodhuksi déning pabrikan Nokia.

GT: Nokia N80 is a mobile phone produced by the manufacturer Nokia.
1,269 Kuwi sing paling penting banget.

GT: That is the most important thing.
1,246 Kemangga iki racaké akèh tinemu ing Amérika Sarékat.

GT: Many of these mangoes are found in the United States.
Table 6: Some commonly repeated lines in the Javanese synthetic bitext, with a English translation below obtained
from Google Translate (GT). These lines are hallucinations due to the impoverished English-to-Javanese reverse
model.

Lang Uniq Base BT %
Indonesian 6,901,700 42.4 44.3 +1.4%
Oromo 6,746,709 4.5 7.3 +62.2%
Kannada 6,716,601 8.3 18.7 +125.3%
Javanese 6,446,456 12.4 20.0 +61.3%
Tajik 6,018,847 9.7 17.0 +75.3%

Table 7: Number of unique lines (foreign side) of
synthetic bitext. In total, 6,920,211 lines were back-
translated. Little duplication is present in the Indonesian
data, but the problem is significant in Oromo, Kannada,
Javanese, and and Tajik. Base and BT BLEU scores and
relative improvement are from Table 1.

Further, if we assume the data center power us-
age effectiveness (PUE) is 1.5 and there are no
additional offsets for renewable energy, the CO2e
emission might be 4.9× 1.5 = 7.35 tons.

Our Transformer models average about 275 mil-
lion parameters.

F Language Properties

Table 8 lists some of the properties of the languages
investigated in this work.
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Code Language Family Script Speaker Example Region Type: MorphoSyntax, Phonology, etc.
heb Hebrew Afro-Asiatic, Semitic Hebrew 9.4m Israel SVO, 22c/5v/4d
srp Serbian Indo-European, Balto-Slavic Cyrillic 10.3m Serbia SVO, 7 cases, 25c/5v
ind Indonesian Austronesian, Malayo-Polynesian Latin 199.0m Indonesia SVO, 19c/6v/3d
slv Slovenian Indo-European, Balto-Slavic Latin 2.2m Slovenia SVO, 6 cases, 21c/8v/2d
slk Slovak Indo-European, Balto-Slavic Latin 7.2m Slovakia SVO, 6 case, 27c/10v/4d
est/ekk Estonian Uralic, Finnic Latin 1.2m Estonia SVO, 14 cases
kor Korean Koreanic Hangul 81.5m South Korea SOV, 6 cases, 21c/8v/12d
lit Lithuanian Indo-European, Balto-Slavic Latin 2.9m Lithuania SVO, 6 cases, 37c/10v, tonal
vie Vietnamese Austro-Asiatic, Mon-Khmer Latin 76.8m Vietnam SVO, 25c/11v/20d, 6 tones
lav/lvs Latvian Indo-European: Balto-Slavic Latin 2.0m Latvia SVO, 5 case, 25c/11v/5d
fas/pes Farsi Indo-European, Indo-Iranian Arabic 74.2m Iran SOV, 23c/6v
bos Bosnian Indo-European, Balto-Slavic, Slavic Latin 2.7m Bosnia&Herzegovina SVO, 7 cases, 25c/5v
swh Swahili Niger-Congo, Atlantic-Congo Latin 69.2m Tanzania SVO, 18 noun classes
ukr Ukrainian Indo-European, Balto-Slavic Cyrillic 33.2m Ukraine SVO, 7 cases, 30c/6v
hin Hindi Indo-European, Indo-Iranian Devanagari 600.5m India SOV, 30c/10v/2d
tgl Tagalog Austronesian, Malayo-Polynesian Latin 25.7m Philippines VSO, 16c/5v
msa/zsm Malay Austronesian, Malayo-Polynesian Latin 81.6m Malaysia SVO
cat Catalan Indo-European, Italic, Romance Latin 9.2m Spain SVO, 22c/7v/4d
isl Icelandic Indo-European, Germanic Latin 0.3m Iceland SVO, 4 cases, 20c/8v/5d
mkd Macedonian Indo-European, Balto-Slavic Cyrillic 1.7m North Macedonia SVO, 26c/5v
mlt Maltese Afro-Asiatic, Semitic Latin 0.5m Malta SVO, 23c10v8d
ben Bengali Indo-European, Indo-Iranian Bengali 267.7m Bangladesh SOV, 5 cases, 35c/5v
afr Afrikaans Indo-European, Germanic Latin 17.6m South Africa SVO, sometimes SOV, 20c/16v/9d
xho Xhosa Niger-Congo, Atlantic-Congo Latin 19.2m South Africa SVO, 17 noun classes, 58c/10v, 2 tones
zul Zulu Niger-Congo, Atlantic-Congo Latin 27.8m South Africa SVO, 13 noun classes, 30c/10v
sna Shona Niger-Congo, Atlantic-Congo Latin 9.0m Zimbabwe SVO, 13 noun classes, 31c/5v/2d, 2 tones
gle Irish Indo-European, Celtic Latin 1.2m Ireland VSO, 3 cases, 32c/11v/4d
hau Hausa Afro-Asiatic, Chadic Latin 74.9m Nigeria SVO, 33c/10v/2d, 2 tones
tam Tamil Dravidian, Southern Tamil 85.5m India SOV, 8 cases, 18c/10v/2d
urd Urdu Indo-European, Indo-Iranian Arabic 230.1m Pakistan SOV, 30c/20v/2d
yor Yoruba Niger-Congo, Atlantic-Congo Latin 43.0m Nigeria SVO, 17c/11v, 3 tones
kat Georgian Kartvelian, Georgian Georgian 3.9m Georgia SOV, 18 cases 27c/5v
mal Malayalam Dravidian, Southern Malayalam 37.9m India SOV, 7 cases 37c/11v/4d
azj Azerbaijani Turkic, Southern Latin 9.2m Azerbaijan SOV, 6 cases, 24c/9v
jav Javanese Austronesian, Malayo-Polynesian Latin 68.3m Indonesia SVO, 21c/8v
mar Marathi Indo-European, Indo-European Devanagari 99.1m India SOV, 7 cases, 37c/8v/2d
nya Nyanja Niger-Congo, Atlantic-Congo Latin 14.4m Malawi SVO
bel Belarusian Indo-European, Balto-Slavic, Slavic Cyrillic 3.9m Belarus SVO, 6 cases, 37c/6v
hye Armenian Indo-European, Armenian Armenian 3.8m Armenia SVO, 7 cases, 30c/7v
amh Amharic Afro-Asiatic, Semitic Ethiopic 57.4m Ethiopia SOV 4 cases, 27c/7v
tel Telegu Dravidian, South Central Telegu 95.6m India SOV, 7 cases, 21c/11v
npi Nepali Indo-European, Indo-Iranian Devanagari 24.7m Nepal SOV, 11 noun classes, 4 cases, 29c/11v
som Somali Afro-Asiatic, Cushitic Latin 21.9m Somalia SOV, 22c/10v, 3 tones
cym Welsh Indo-European, Celtic Latin 0.6m United Kingdom VSO, 23c/12v/8d
lin Lingala Niger-Congo, Atlantic-Congo Latin 2.3m D.R. Congo SVO, 12 noun classes, 16c/5v, 2 tones
lug Ganda Niger-Congo, Atlantic-Congo Latin 11.0m Uganda SVO
mya Burmese Sino-Tibetan, Tibeto-Burman Myanmar 43.0m Myanmar SOV, 31c/8v/4d, 3 tones
nso Pedi Niger-Congo, Atlantic-Congo Latin 13.7m South Africa SVO
glg Galician Indo-European, Italic, Romance Latin 3.1m Spain SVO
ceb Cebuano Austronesian, Malayo-Polynesian Latin 15.9m Phillippines VSO, 16c/3v/4d
orm/gaz Oromo Afro-Asiatic, Cushitic Latin 19.2m Ethiopia SOV, 7 cases, 25c/10v
kaz Kazakh Turkic, Western Cyrillic 13.2m Kazakhstan SOV, 7 cases, 18c/9v
khm Central Khmer Austro-Asiatic, Mon-Khmer Khmer 17.9m Cambodia SVO, 21c/17v/13d
ibo Igbo Niger-Congo, Atlantic-Congo Latin 29.0m Nigeria SVO, 37c8v, 3 tones
mon/khk Mongolian Mongolic, Eastern Cyrillic 2.7m Mongolia SOV, 7 cases, 29c/14v/4d
guj Gujarati Indo-European, Indo-Iranian Gujarati 61.9m India SOV, 6 cases, 31c/8v/2d
kan Kannada Dravidian, South Kannada 58.6m India SOV, 7 cases, 22c/20v/2d
tgk Tajik Indo-European, Indo-Iranian Cyrillic 8.1m Tajikistan SOV, 27c/6v
pan Panjabi Indo-European, Indo-Iranian Gurmukhi 52.2m India SOV, 7 cases, 15c/24v, 3 tones
kir Kirghiz Turkic, Western Cyrillic 5.4m Kyrgyzstan SOV, 7 cases, 19c/8v

Table 8: Properties of the 60 languages investigated in this paper, according to Ethnologue (Eberhard et al., 2021).
Code is the ISO 639-3 language code. When two ISO codes are given (e.g. lav/lvs), the first is the macrolanguage
code used in FLORES101 and the second refers to the individual language code we used to look up the language
properties: e.g. Latvian (lav) is considered a macrolanguage that includes both Standard Latvian (lvs) and Latagalian
(ltg), and the table focuses on one (lvs) for concreteness. A macrolanguage is defined by ISO 639-3 as consisting of
"multiple, closely related individual languages that are deemed in some usage contexts to be a single language."
Family indicates the language family classification. Script indicates the writing system used in our data, but note
that in practice these languages could be written by other scripts (e.g. Kazahk may be written in both Cyrillic and
Latin alphabets). Speaker is the estimated worldwide population of L1 and L2 speakers (in millions). Rows in this
table are sorted by the amount of bitext resources, so note that #speaker does not correlate with resource availability,
as is true in many "low-resource" problems. Region indicates an example geographic region where the language
is recognized as well-established: languages in Asia, Europe, and Africa are represented, but missing are those
from Oceania and the Americas. The last column lists a few interesting linguistic properties, when available. For
morphosyntax, we list the common word order (e.g. SVO, SOV, VSO), number of noun classes, or number of
cases. For phonology, the format "22c/5v/4d" in e.g. Hebrew means 22 consonants, 5 vowels, and 4 dipthongs.
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