Artificial Intelligence： Search \＆Mining

2015 人工知能：探索とマイニング

Sequence Mining

Kevin Duh

2015－05－26

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

Recall: Frequent Itemset Mining

- Given a finite set of items $\{A, B, C, \ldots\}$

Recall: Frequent Itemset Mining

- Given a finite set of items $\{A, B, C, \ldots\}$
- in several baskets, e.g.
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

Recall: Frequent Itemset Mining

- Given a finite set of items $\{A, B, C, \ldots\}$
- in several baskets, e.g.
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- The support of itemset I is the number of baskets that contain I

Recall: Frequent Itemset Mining

- Given a finite set of items $\{A, B, C, \ldots\}$
- in several baskets, e.g.
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- The support of itemset I is the number of baskets that contain I
- Goal: Find all frequent itemsets, i.e. sets of items with support $\geq s$

Example

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

Example

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$

Example

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- 2-item Itemsets \& their support:

$$
\begin{aligned}
- & \{A, B\}: 3,\{A, C\}: 1,\{A, D\}: 1,\{A, E\}: 2, \\
& \{A, F\}: 1,\{B, C\}: 1,\{B, D\}: 1, \ldots
\end{aligned}
$$

Example

- We are given:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$
- 1-item Itemsets \& their support:
- $\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- 2-item Itemsets \& their support:
- $\{A, B\}: 3,\{A, C\}: 1,\{A, D\}: 1,\{A, E\}: 2$,
$\{A, F\}: 1,\{B, C\}: 1,\{B, D\}: 1, \ldots$
- 3-item Itemsets \& their support:
- $\{A, B, C\}: 1,\{A, B, D\}: 1,\{A, B, E\}: 1$,
$\{A, B, F\}: 1,\{A, C, D\}: 0, \ldots$

Monotonicity Principle

- If I is not frequent, then no superset of I can be frequent.
- Aprior Algorithm exploits this: Smart enumeration of itemset.

Apriori Algorithm

Alternate between:

- L_{k} : set of truly frequent itemsets of size k
- C_{k} : set of candidate itemsets of size k
- constructed from L_{k-1}, avoids all possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (1-item itemsets)

- $C_{1}:\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- $L_{1}:\{A\},\{B\},\{E\}$

Apriori Algorithm (example run)

- Find frequent itemsets $(s=3)$:
- Basket 1: $\{A, B, D\}$
- Basket 2: $\{A, B, C, E\}$
- Basket 3: $\{B, E, F\}$
- Basket 4: $\{A, B, E, F\}$

1 First pass (1-item itemsets)

- $C_{1}:\{A\}: 3,\{B\}: 4,\{C\}: 1,\{D\}: 1,\{E\}: 3,\{F\}: 2$
- $L_{1}:\{A\},\{B\},\{E\}$

2 Second pass (2-item itemsets)

- $C_{2}:\{A, B\}: 3,\{A, E\}: 2,\{B, E\}: 3$
- $L_{2}:\{A, B\},\{B, E\}$

3 Third pass (3-item itemsets)

- $C_{3}:\{A, B, E\}: 2 ; L_{3}: \emptyset$

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

From Itemsets to Sequences

- Itemset Mining
- Purchase 1: $\{$ camera, $U S B\}$
- Purchase 2: \{camera, US B, book\}
- Purchase 3: $\{$ printer, paper $\}$
- Purchase 4: \{ink, paper\}

From Itemsets to Sequences

- Itemset Mining
- Purchase 1: $\{$ camera, US B\}
- Purchase 2: \{camera, US B, book\}
- Purchase 3: $\{$ printer, paper $\}$
- Purchase 4: \{ink, paper\}
- Sequence Mining:
- Customer 1: 〈\{camera, USB\}, \{printer $\}\rangle$- Customer 2: 〈\{camera\}, $\{$ printer $\},\{$ ink $\}\rangle$

From Itemsets to Sequences

- Itemset Mining
- Purchase 1: $\{$ camera, US B\}
- Purchase 2: \{camera, US B, book\}
- Purchase 3: \{printer, paper\}
- Purchase 4: \{ink, paper\}
- Sequence Mining:
- Customer 1: 〈\{camera, USB\}, \{printer $\}\rangle$- Customer 2: 〈\{camera\}, $\{$ printer $\},\{$ ink $\}\rangle$
- Customers who bought camera are likely to buy printer later

Problem Definition

－A Sequence is an ordered list of itemsets：

- Customer 1：〈\｛camera，US B\}, \{printer\}〉
- Customer 2：〈\｛camera\}, \{printer\}, \{ink\}〉
－Customer $n:\left\langle I_{1}, I_{2}, I_{3}, \ldots\right\rangle$
－Goal：Find frequent sub－sequences with support $\geq s$
－i．e．more than s customers exhibit this buying behavior
$\langle\{A\},\{A, B, C\},\{A, C\},\{D\},\{C, F\}\rangle$
- This has 5 itemsets (aka "events")
$\langle\{A\},\{A, B, C\},\{A, C\},\{D\},\{C, F\}\rangle$
- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
$\langle\{A\},\{A, B, C\},\{A, C\},\{D\},\{C, F\}\rangle$
- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
$\langle\{A\},\{A, B, C\},\{A, C\},\{D\},\{C, F\}\rangle$
- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
- $\langle\{A, B, C\},\{D\}\rangle$
- $\langle\{A\},\{B, C\},\{C\},\{D\},\{C, F\}\rangle$
- $\langle\{A\},\{B, C\},\{D\},\{F\}\rangle$
$\langle\{A\},\{A, B, C\},\{A, C\},\{D\},\{C, F\}\rangle$
- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
- $\langle\{A, B, C\},\{D\}\rangle$
- $\langle\{A\},\{B, C\},\{C\},\{D\},\{C, F\}\rangle$
- $\langle\{A\},\{B, C\},\{D\},\{F\}\rangle$
- But not: $\langle\{D\},\{A, B, C\}\rangle$, etc.

From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. $\langle\{A\},\{A\},\{C\},\{D\},\{F\}\rangle$ written as: $\langle A, A, C, D, F\rangle$

From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. $\langle\{A\},\{A\},\{C\},\{D\},\{F\}\rangle$ written as: $\langle A, A, C, D, F\rangle$
- Suitable for sequence data such as text, DNA, browsing history

Example

- Extract frequent sub-sequence ($s=3$)
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$

Example

- Extract frequent sub-sequence $(s=3)$
$11\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- Frequent sub-sequences include:
- $\langle A\rangle$
- $\langle A, A\rangle$
- $\langle A, A, A\rangle$
- $\langle A, C\rangle$

Applying the Apriori Algorithm

- Extract frequent sub-sequence ($s=3$)
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$

Applying the Apriori Algorithm

- Extract frequent subsequence $(s=3)$
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st Pass:
- $C_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$

Applying the Apriori Algorithm

- Extract frequent sub-sequence $(s=3)$
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st Pass:
- $C_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$
- $L_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle$

Applying the Apriori Algorithm

- Extract frequent sub-sequence $(s=3)$
$1\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st Pass:
- $C_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$
- $L_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle$
- 2nd Pass:
- $C_{2}: 3 \times 3$ candidates,
$\langle A, A\rangle,\langle A, B\rangle,\langle A, C\rangle$,
$\langle B, A\rangle,\langle B, B\rangle,\langle B, C\rangle,\langle C, A\rangle,\langle C, B\rangle,\langle C, C\rangle$

Applying the Apriori Algorithm

- Extract frequent sub-sequence $(s=3)$
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st Pass:
- $C_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$
- $L_{1}:\langle A\rangle,\langle B\rangle,\langle C\rangle$
- 2nd Pass:
- $C_{2}: 3 \times 3$ candidates,
$\langle A, A\rangle,\langle A, B\rangle,\langle A, C\rangle$,
$\langle B, A\rangle,\langle B, B\rangle,\langle B, C\rangle,\langle C, A\rangle,\langle C, B\rangle,\langle C, C\rangle$
- $L_{2}:$?

Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset

Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset

Next, we present the PrefixSpan algorithm.

- An instance of a family of algorithms called Frequent-Pattern (FP) Growth that addresses the above issues.

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

Prefix \& Suffix

$\langle A, A, A, C, C\rangle$

Prefix	Suffix
$\langle A\rangle$	$\langle A, A, C, C\rangle$
$\langle A, A\rangle$	$\langle A, C, C\rangle$
$\langle A, A, A\rangle$	$\langle C, C\rangle$
$\langle A, A, A, C\rangle$	$\langle C\rangle$

PrefixSpan Algorithm (main idea)

- Divide \& Conquer:

1 First find length-1 frequent sequences. Suppose there are m such cases.

PrefixSpan Algorithm (main idea)

- Divide \& Conquer:

1 First find length-1 frequent sequences. Suppose there are m such cases.
2 The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.

PrefixSpan Algorithm (main idea)

- Divide \& Conquer:

1 First find length-1 frequent sequences. Suppose there are m such cases.
2 The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.
3 Each partition is mined separately. This process is done recursively.

PrefixSpan Algorithm (main idea)

- Divide \& Conquer:

1 First find length-1 frequent sequences. Suppose there are m such cases.
2 The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.
3 Each partition is mined separately. This process is done recursively.

PrefixSpan Algorithm (main idea)

- Divide \& Conquer:

1 First find length-1 frequent sequences. Suppose there are m such cases.
2 The complete set of frequent patterns can be partitioned into m subsets, each subset having the same prefix.
3 Each partition is mined separately. This process is done recursively.

- Each partition is a (smaller)
"projected" database

Projected database

- Original database:
$11\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- Projected database of Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
2 \emptyset
3 $\langle D, C, A, A, B\rangle$
$4\langle C, B, C, A, A\rangle$
- Original database:

1 $\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$

- Projected database of Prefix $\langle C\rangle$:
- Original database:

1 $\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$

- Projected database of Prefix $\langle C\rangle$:
$1\langle C\rangle$
- Original database:
$1\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- Projected database of Prefix $\langle C\rangle$:
$1\langle C\rangle$
2 $\langle B, C, B\rangle$
- Original database:
$1\langle A, A, A, C, C\rangle$
- $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- Projected database of Prefix $\langle C\rangle$:
$1\langle C\rangle$
2 $\langle B, C, B\rangle$
3 $\langle A, A, B\rangle$
- Original database:
$1\langle A, A, A, C, C\rangle$
- $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- Projected database of Prefix $\langle C\rangle$:
$1\langle C\rangle$
2 $\langle B, C, B\rangle$
3 $\langle A, A, B\rangle$
4 $\langle B, C, A, A\rangle$
- Original database:

1 $\langle A, A, A, C, C\rangle$
2 $\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
4 $\langle A, C, B, C, A, A\rangle$

- Projected database of Prefix $\langle C\rangle$:
$1\langle C\rangle$
2 $\langle B, C, B\rangle$
$3\langle A, A, B\rangle$
$4\langle B, C, A, A\rangle$
- Trick: Frequent items in projected database combines with Prefix $\langle C\rangle$ to form frequent length- 2 sequence!
- If B is frequent, then so is $\langle C, B\rangle$
- If C is frequent, then so is $\langle C, C\rangle$

PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence ($s=3$) $1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$

PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence $(s=3)$ $1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st pass: $A: 3, B: 3, C: 4, D: 1$

PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence $(s=3)$ $1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st pass: $A: 3, B: 3, C: 4, D: 1$
- Frequent length-1 seq: $\langle A\rangle,\langle B\rangle,\langle C\rangle$

PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence $(s=3)$ $1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st pass: $A: 3, B: 3, C: 4, D: 1$
- Frequent length-1 seq: $\langle A\rangle,\langle B\rangle,\langle C\rangle$
- No frequent seq (any length) w/ prefix D

PrefixSpan Algorithm (example run)

- Extract frequent sub-sequence $(s=3)$
$1\langle A, A, A, C, C\rangle$
$2\langle B, C, B, C, B\rangle$
$3\langle A, D, C, A, A, B\rangle$
$4\langle A, C, B, C, A, A\rangle$
- 1st pass: $A: 3, B: 3, C: 4, D: 1$
- Frequent length-1 seq: $\langle A\rangle,\langle B\rangle,\langle C\rangle$
- No frequent seq (any length) w/ prefix D
- Projected database with Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
$2 \emptyset$
$3\langle D, C, A, A, B\rangle$
$4\langle C, B, C, A, A\rangle$
- Projected database with Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
2 \emptyset
$3\langle D, C, A, A, B\rangle$
4 $\langle C, B, C, A, A\rangle$
- Projected database with Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
2 \emptyset
3 $\langle D, C, A, A, B\rangle$
4 $\langle C, B, C, A, A\rangle$
- Frequent items $(s=3): \mathrm{A}: 3, \mathrm{~B}: 2, \mathrm{C}: 3$
- Frequent length-2 seq: $\langle A, A\rangle,\langle A, C\rangle$
- Projected database with Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
2 \emptyset
$3\langle D, C, A, A, B\rangle$
$4\langle C, B, C, A, A\rangle$
- Frequent items $(s=3): \mathrm{A}: 3, \mathrm{~B}: 2, \mathrm{C}: 3$
- Frequent length-2 seq: $\langle A, A\rangle,\langle A, C\rangle$
- Projected database with Prefix $\langle A, A\rangle$:
$1\langle A, C, C\rangle$
2 \emptyset
3 $\langle A, B\rangle$
(4) $\langle A\rangle$
- Projected database with Prefix $\langle A\rangle$:
$1\langle A, A, C, C\rangle$
2 \emptyset
3 $\langle D, C, A, A, B\rangle$
$4\langle C, B, C, A, A\rangle$
- Frequent items $(s=3): \mathrm{A}: 3, \mathrm{~B}: 2, \mathrm{C}: 3$
- Frequent length-2 seq: $\langle A, A\rangle,\langle A, C\rangle$
- Projected database with Prefix $\langle A, A\rangle$:
$1\langle A, C, C\rangle$
[\emptyset
$3\langle A, B\rangle$
4 $\langle A\rangle$
- Frequent items $(s=3): \mathrm{A}: 3, \mathrm{~B}: 1, \mathrm{C}: 1$
- Frequent length-3 seq: $\langle A, A, A\rangle$
- Projected database w/ Prefix $\langle A, A, A\rangle$:
$1\langle C, C\rangle$
120
13 $\langle B\rangle$
4 ■
- Projected database w/ Prefix $\langle A, A, A\rangle$:
$1\langle C, C\rangle$
2 1
13 $\langle B\rangle$
40
- Frequent items ($s=3$): B: 1, C: 1
- No Frequent length-4 seq with prefix $\langle A, A, A\rangle$
- Projected database w/ Prefix $\langle A, A, A\rangle$:
$1\langle C, C\rangle$
$2 \square$
3 $\langle B\rangle$
$4 \emptyset$
- Frequent items $(s=3): \mathrm{B}: 1, \mathrm{C}: 1$
- No Frequent length-4 seq with prefix $\langle A, A, A\rangle$
- Repeat recursively for Projected databases with Prefix $\langle A, C\rangle$
- Repeat recursively for Projected databases with Prefix $\langle B\rangle$
- Repeat recursively for Projected databases with Prefix $\langle C\rangle$

PrefixSpan vs. Apriori Algorithm

PrefixSpan	Apriori
Generate 1-item only,	Generates candidate
then combine with prefix	sequences
Scan projected	Scan whole database per candidate database
Depth-first search	Breadth-first search

Main cost of PrefixSpan is construction of projected database. Can be implemented by pointers

Summary

－Sequence Mining problem：

- Customer 1：〈\｛camera，US B\}, \{printer\}〉
- Customer 2：〈\｛camera\}, \{printer\}, \{ink\}〉
－Customers who bought camera are likely to buy printer later

Summary

－Sequence Mining problem：

- Customer 1：〈\｛camera，US B\}, \{printer\}〉
- Customer 2：〈\｛camera\}, \{printer\}, \{ink\}〉
－Customers who bought camera are likely to buy printer later
－Apriori Algorithm：works ok but costly

Summary

－Sequence Mining problem：

- Customer 1：〈\｛camera，US B\}, \{printer\}〉
- Customer 2：〈\｛camera\}, $\{$ printer $\},\{$ ink $\}\rangle$
－Customers who bought camera are likely to buy printer later
－Apriori Algorithm：works ok but costly
－PrefixSpan：Divide \＆Conquer
－Partition data by prefix．
－Mine frequent item on smaller database then combine with prefix

Summary

－Sequence Mining problem：

- Customer 1：〈\｛camera，US B\}, \{printer\}〉
- Customer 2：〈\｛camera\}, $\{$ printer $\},\{$ ink $\}\rangle$
－Customers who bought camera are likely to buy printer later
－Apriori Algorithm：works ok but costly
－PrefixSpan：Divide \＆Conquer
－Partition data by prefix．
－Mine frequent item on smaller database then combine with prefix
－Both still exploit Monotonicity

Next Week

- Graph Mining
- Homework posted online

