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Recall: Frequent Itemset Mining

▶ Given a finite set of items {A, B,C, . . .}

▶ in several baskets, e.g.
▶ Basket 1: {A, B,D}
▶ Basket 2: {A, B,C, E}
▶ Basket 3: {B, E, F}
▶ Basket 4: {A, B, E, F}

▶ The support of itemset I is the
number of baskets that contain I

▶ Goal: Find all frequent itemsets, i.e.
sets of items with support ≥ s
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Example
▶ We are given:

▶ Basket 1: {A, B,D}
▶ Basket 2: {A, B,C, E}
▶ Basket 3: {B, E, F}
▶ Basket 4: {A, B, E, F}

▶ 1-item Itemsets & their support:
▶ {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2

▶ 2-item Itemsets & their support:
▶ {A, B}: 3, {A,C}: 1, {A,D}: 1, {A, E}: 2,
{A, F}: 1, {B,C}: 1, {B,D}: 1, ...

▶ 3-item Itemsets & their support:
▶ {A, B,C}: 1, {A, B,D}: 1, {A, B, E}: 1,
{A, B, F}: 1, {A,C,D}: 0, ...
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Monotonicity Principle

▶ If I is not frequent, then no superset of
I can be frequent.

▶ Aprior Algorithm exploits this: Smart
enumeration of itemset.
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Apriori Algorithm
Alternate between:
▶ Lk: set of truly frequent itemsets of

size k
▶ Ck: set of candidate itemsets of size k

▶ constructed from Lk−1, avoids all
possible enumerations

Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6
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Apriori Algorithm (example run)
▶ Find frequent itemsets (s = 3):

▶ Basket 1: {A, B,D}
▶ Basket 2: {A, B,C, E}
▶ Basket 3: {B, E, F}
▶ Basket 4: {A, B, E, F}

1 First pass (1-item itemsets)
▶ C1: {A}:3, {B}:4, {C}:1, {D}:1, {E}:3, {F}:2
▶ L1: {A}, {B}, {E}

2 Second pass (2-item itemsets)
▶ C2: {A, B}: 3, {A, E}: 2, {B, E}: 3
▶ L2: {A, B}, {B, E}

3 Third pass (3-item itemsets)
▶ C3: {A, B, E}: 2; L3 : ∅
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Today’s Agenda

Review of Apriori Algorithm

SequenceMining

PrefixSpan Algorithm
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From Itemsets to Sequences

▶ Itemset Mining
▶ Purchase 1: {camera,US B}
▶ Purchase 2: {camera,US B, book}
▶ Purchase 3: {printer, paper}
▶ Purchase 4: {ink, paper}

▶ Sequence Mining:
▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩

▶ Customers who bought camera are
likely to buy printer later
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ProblemDefinition

▶ A Sequence is an ordered list of
itemsets:

▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩
▶ Customer n: ⟨I1, I2, I3, ...⟩

▶ Goal: Find frequent sub-sequences
with support ≥ s

▶ i.e. more than s customers exhibit this
buying behavior
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⟨{A}, {A, B,C}, {A,C}, {D}, {C, F}⟩
▶ This has 5 itemsets (aka “events”)

▶ This has 9 items total, so is called a
length-9 sequence

▶ Item A occurs 3 times. It contributes 3
to the length but only 1 to the support

▶ Sub-sequences include:
▶ ⟨{A, B,C}, {D}⟩
▶ ⟨{A}, {B,C}, {C}, {D}, {C, F}⟩
▶ ⟨{A}, {B,C}, {D}, {F}⟩

▶ But not: ⟨{D}, {A, B,C}⟩, etc.
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From here on, for simplicity...

▶ We only consider sequences with
1-item events

▶ e.g. ⟨{A}, {A}, {C}, {D}, {F}⟩
written as: ⟨A, A,C,D, F⟩

▶ Suitable for sequence data such as
text, DNA, browsing history
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Example

▶ Extract frequent sub-sequence (s = 3)
1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ Frequent sub-sequences include:
▶ ⟨A⟩
▶ ⟨A, A⟩
▶ ⟨A, A, A⟩
▶ ⟨A,C⟩
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Applying the Apriori Algorithm
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st Pass:
▶ C1 : ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩
▶ L1 : ⟨A⟩, ⟨B⟩, ⟨C⟩

▶ 2nd Pass:
▶ C2 : 3 × 3 candidates,
⟨A, A⟩, ⟨A, B⟩, ⟨A,C⟩,
⟨B, A⟩, ⟨B, B⟩, ⟨B,C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C,C⟩

▶ L2 : ?

29 / 67



Applying the Apriori Algorithm
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st Pass:
▶ C1 : ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩

▶ L1 : ⟨A⟩, ⟨B⟩, ⟨C⟩
▶ 2nd Pass:

▶ C2 : 3 × 3 candidates,
⟨A, A⟩, ⟨A, B⟩, ⟨A,C⟩,
⟨B, A⟩, ⟨B, B⟩, ⟨B,C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C,C⟩

▶ L2 : ?

30 / 67



Applying the Apriori Algorithm
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st Pass:
▶ C1 : ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩
▶ L1 : ⟨A⟩, ⟨B⟩, ⟨C⟩

▶ 2nd Pass:
▶ C2 : 3 × 3 candidates,
⟨A, A⟩, ⟨A, B⟩, ⟨A,C⟩,
⟨B, A⟩, ⟨B, B⟩, ⟨B,C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C,C⟩

▶ L2 : ?

31 / 67



Applying the Apriori Algorithm
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st Pass:
▶ C1 : ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩
▶ L1 : ⟨A⟩, ⟨B⟩, ⟨C⟩

▶ 2nd Pass:
▶ C2 : 3 × 3 candidates,
⟨A, A⟩, ⟨A, B⟩, ⟨A,C⟩,
⟨B, A⟩, ⟨B, B⟩, ⟨B,C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C,C⟩

▶ L2 : ?

32 / 67



Applying the Apriori Algorithm
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st Pass:
▶ C1 : ⟨A⟩, ⟨B⟩, ⟨C⟩, ⟨D⟩
▶ L1 : ⟨A⟩, ⟨B⟩, ⟨C⟩

▶ 2nd Pass:
▶ C2 : 3 × 3 candidates,
⟨A, A⟩, ⟨A, B⟩, ⟨A,C⟩,
⟨B, A⟩, ⟨B, B⟩, ⟨B,C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C,C⟩

▶ L2 : ?
33 / 67



Issues with the Apriori Algorithm
▶ We still need to generate many

candidates
▶ For each candidate, we need to scan

the entire dataset

Next, we present the PrefixSpan algorithm.

▶ An instance of a family of algorithms
called Frequent-Pattern (FP) Growth
that addresses the above issues.
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Prefix & Suffix

⟨A, A, A,C,C⟩

Prefix Suffix
⟨A⟩ ⟨A, A,C,C⟩
⟨A, A⟩ ⟨A,C,C⟩
⟨A, A, A⟩ ⟨C,C⟩
⟨A, A, A,C⟩ ⟨C⟩
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PrefixSpan Algorithm (main idea)

▶ Divide & Conquer:
1 First find length-1 frequent sequences.

Suppose there are m such cases.

2 The complete set of frequent patterns
can be partitioned into m subsets, each
subset having the same prefix.

3 Each partition is mined separately. This
process is done recursively.

▶ Each partition is a (smaller)
”projected” database
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Projected database

▶ Original database:
1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ Projected database of Prefix ⟨A⟩:
1 ⟨A, A,C,C⟩
2 ∅
3 ⟨D,C, A, A, B⟩
4 ⟨C, B,C, A, A⟩
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1 ⟨C⟩
2 ⟨B,C, B⟩
3 ⟨A, A, B⟩
4 ⟨B,C, A, A⟩

▶ Trick: Frequent items in projected
database combines with Prefix ⟨C⟩ to
form frequent length-2 sequence!

▶ If B is frequent, then so is ⟨C, B⟩
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database combines with Prefix ⟨C⟩ to
form frequent length-2 sequence!

▶ If B is frequent, then so is ⟨C, B⟩
▶ If C is frequent, then so is ⟨C,C⟩
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PrefixSpan Algorithm (example run)
▶ Extract frequent sub-sequence (s = 3)

1 ⟨A, A, A,C,C⟩
2 ⟨B,C, B,C, B⟩
3 ⟨A,D,C, A, A, B⟩
4 ⟨A,C, B,C, A, A⟩

▶ 1st pass: A : 3, B : 3,C : 4,D : 1
▶ Frequent length-1 seq: ⟨A⟩, ⟨B⟩, ⟨C⟩
▶ No frequent seq (any length) w/ prefix D

▶ Projected database with Prefix ⟨A⟩:
1 ⟨A, A,C,C⟩
2 ∅
3 ⟨D,C, A, A, B⟩
4 ⟨C, B,C, A, A⟩
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▶ Projected database with Prefix ⟨A⟩:
1 ⟨A, A,C,C⟩
2 ∅
3 ⟨D,C, A, A, B⟩
4 ⟨C, B,C, A, A⟩

▶ Frequent items (s = 3): A: 3, B: 2, C: 3
▶ Frequent length-2 seq: ⟨A, A⟩, ⟨A,C⟩

▶ Projected database with Prefix ⟨A, A⟩:
1 ⟨A,C,C⟩
2 ∅
3 ⟨A, B⟩
4 ⟨A⟩

▶ Frequent items (s = 3): A: 3, B: 1, C: 1
▶ Frequent length-3 seq: ⟨A, A, A⟩
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▶ Projected database w/ Prefix ⟨A, A, A⟩:
1 ⟨C,C⟩
2 ∅
3 ⟨B⟩
4 ∅

▶ Frequent items (s = 3): B: 1, C: 1
▶ No Frequent length-4 seq with prefix
⟨A, A, A⟩

▶ Repeat recursively for Projected
databases with Prefix ⟨A,C⟩

▶ Repeat recursively for Projected
databases with Prefix ⟨B⟩

▶ Repeat recursively for Projected
databases with Prefix ⟨C⟩
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▶ Projected database w/ Prefix ⟨A, A, A⟩:
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2 ∅
3 ⟨B⟩
4 ∅

▶ Frequent items (s = 3): B: 1, C: 1
▶ No Frequent length-4 seq with prefix
⟨A, A, A⟩

▶ Repeat recursively for Projected
databases with Prefix ⟨A,C⟩
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PrefixSpan vs. Apriori Algorithm

PrefixSpan Apriori
Generate 1-item only, Generates candidate
then combine with prefix sequences
Scan projected Scan whole database
database per candidate
Depth-first search Breadth-first search

Main cost of PrefixSpan is construction of projected

database. Can be implemented by pointers
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Summary
▶ Sequence Mining problem:

▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩
▶ Customers who bought camera are likely

to buy printer later

▶ Apriori Algorithm: works ok but costly
▶ PrefixSpan: Divide & Conquer

▶ Partition data by prefix.
▶ Mine frequent item on smaller database

then combine with prefix

▶ Both still exploit Monotonicity

63 / 67



Summary
▶ Sequence Mining problem:

▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩
▶ Customers who bought camera are likely

to buy printer later

▶ Apriori Algorithm: works ok but costly

▶ PrefixSpan: Divide & Conquer
▶ Partition data by prefix.
▶ Mine frequent item on smaller database

then combine with prefix

▶ Both still exploit Monotonicity

64 / 67



Summary
▶ Sequence Mining problem:

▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩
▶ Customers who bought camera are likely

to buy printer later

▶ Apriori Algorithm: works ok but costly
▶ PrefixSpan: Divide & Conquer

▶ Partition data by prefix.
▶ Mine frequent item on smaller database

then combine with prefix

▶ Both still exploit Monotonicity

65 / 67



Summary
▶ Sequence Mining problem:

▶ Customer 1: ⟨{camera,US B}, {printer}⟩
▶ Customer 2: ⟨{camera}, {printer}, {ink}⟩
▶ Customers who bought camera are likely

to buy printer later

▶ Apriori Algorithm: works ok but costly
▶ PrefixSpan: Divide & Conquer

▶ Partition data by prefix.
▶ Mine frequent item on smaller database

then combine with prefix

▶ Both still exploit Monotonicity
66 / 67



NextWeek

▶ Graph Mining
▶ Homework posted online
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