Artificial Intelligence: Search & Mining

2015 人工知能:探索とマイニング

Sequence Mining

Kevin Duh

2015-05-26

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

• Given a finite set of **items** $\{A, B, C, \ldots\}$

- Given a finite set of **items** $\{A, B, C, \ldots\}$
- ► in several **baskets**, e.g.
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}

- Given a finite set of **items** $\{A, B, C, \ldots\}$
- ► in several **baskets**, e.g.
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- The support of itemset I is the number of baskets that contain I

- Given a finite set of **items** $\{A, B, C, \ldots\}$
- ► in several **baskets**, e.g.
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ▶ Basket 4: {*A*, *B*, *E*, *F*}
- The support of itemset *I* is the number of baskets that contain *I*
- ► Goal: Find all **frequent itemsets**, i.e. sets of items with support ≥ s

- ► We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}

- We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ▶ 1-item Itemsets & their support:
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2

- We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ► 1-item Itemsets & their support:
 - ► {A}: 3, {B}: 4, {C}: 1, {D}: 1, {E}: 3, {F}: 2
- 2-item Itemsets & their support:
 - {A, B}: 3, {A, C}: 1, {A, D}: 1, {A, E}: 2, {A, F}: 1, {B, C}: 1, {B, D}: 1, ...

- We are given:
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- ► 1-item Itemsets & their support:
 - ▶ $\{A\}$: 3, $\{B\}$: 4, $\{C\}$: 1, $\{D\}$: 1, $\{E\}$: 3, $\{F\}$: 2
- 2-item Itemsets & their support:
 - {A, B}: 3, {A, C}: 1, {A, D}: 1, {A, E}: 2, {A, F}: 1, {B, C}: 1, {B, D}: 1, ...
- 3-item Itemsets & their support:
 - {A, B, C}: 1, {A, B, D}: 1, {A, B, E}: 1, {A, B, F}: 1, {A, C, D}: 0, ...

Monotonicity Principle

- If *I* is not frequent, then no superset of
 I can be frequent.
- Aprior Algorithm exploits this: Smart enumeration of itemset.

Apriori Algorithm

Alternate between:

- *L_k*: set of **truly frequent** itemsets of size *k*
- ► *C_k*: set of **candidate** itemsets of size *k*
 - constructed from L_{k-1}, avoids all possible enumerations

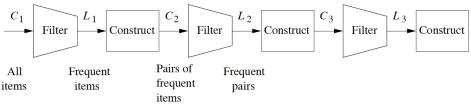


Figure from Rajamaran et. al., Mining of Massive Datasets, chapter 6

Apriori Algorithm (example run)

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ▶ Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- First pass (1-item itemsets)
 - ► *C*₁: {*A*}:3, {*B*}:4, {*C*}:1, {*D*}:1, {*E*}:3, {*F*}:2
 - $L_1: \{A\}, \{B\}, \{E\}$

Apriori Algorithm (example run)

- Find frequent itemsets (s = 3):
 - ▶ Basket 1: {*A*, *B*, *D*}
 - ► Basket 2: {*A*, *B*, *C*, *E*}
 - ▶ Basket 3: {*B*, *E*, *F*}
 - ► Basket 4: {*A*, *B*, *E*, *F*}
- First pass (1-item itemsets)
 - ► *C*₁: {*A*}:3, {*B*}:4, {*C*}:1, {*D*}:1, {*E*}:3, {*F*}:2
 - $L_1: \{A\}, \{B\}, \{E\}$
- Second pass (2-item itemsets)
 - ► C₂: {A, B}: 3, {A, E}: 2, {B, E}: 3
 - $L_2: \{A, B\}, \{B, E\}$
- Third pass (3-item itemsets)
 - C_3 : {A, B, E}: 2; $L_3 : \emptyset$

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

From Itemsets to Sequences

- Itemset Mining
 - ► Purchase 1: {*camera*, *USB*}
 - Purchase 2: {camera, US B, book}
 - Purchase 3: {printer, paper}
 - Purchase 4: {*ink*, *paper*}

From Itemsets to Sequences

- Itemset Mining
 - ► Purchase 1: {*camera*, *USB*}
 - ▶ Purchase 2: {*camera*, *US B*, *book*}
 - Purchase 3: {printer, paper}
 - Purchase 4: {*ink*, *paper*}
- ► Sequence Mining:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉

From Itemsets to Sequences

- Itemset Mining
 - ► Purchase 1: {*camera*, *USB*}
 - ▶ Purchase 2: {*camera*, *US B*, *book*}
 - Purchase 3: {printer, paper}
 - Purchase 4: {*ink*, *paper*}
- Sequence Mining:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
- Customers who bought camera are likely to buy printer later

Problem Definition

- A Sequence is an ordered list of itemsets:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
 - Customer $n: \langle I_1, I_2, I_3, ... \rangle$
- ► Goal: Find frequent sub-sequences with support ≥ s
 - i.e. more than s customers exhibit this buying behavior

This has 5 itemsets (aka "events")

- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence

- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support

- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
 - $\bullet \ \langle \{A, B, C\}, \{D\} \rangle$
 - $\langle \{A\}, \{B, C\}, \{C\}, \{D\}, \{C, F\} \rangle$
 - $\langle \{A\}, \{B, C\}, \{D\}, \{F\} \rangle$

- This has 5 itemsets (aka "events")
- This has 9 items total, so is called a length-9 sequence
- Item A occurs 3 times. It contributes 3 to the length but only 1 to the support
- Sub-sequences include:
 - $\langle \{A, B, C\}, \{D\} \rangle$
 - $\blacktriangleright \ \langle \{A\}, \{B, C\}, \{C\}, \{D\}, \{C, F\} \rangle$
 - $\langle \{A\}, \{B, C\}, \{D\}, \{F\} \rangle$
- But not: $\langle \{D\}, \{A, B, C\} \rangle$, etc.

From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. ({A}, {A}, {C}, {D}, {F}) written as: (A, A, C, D, F)

From here on, for simplicity...

- We only consider sequences with 1-item events
- e.g. ({A}, {A}, {C}, {D}, {F}) written as: ⟨A, A, C, D, F⟩
- Suitable for sequence data such as text, DNA, browsing history

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $\exists \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$
- Frequent sub-sequences include:
 - $\langle A \rangle$
 - $\langle A, A \rangle$
 - $\langle A, A, A \rangle$
 - $\langle A, C \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$
- Ist Pass:
 - $C_1:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \quad \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$
- Ist Pass:
 - $C_1:\langle A\rangle,\langle B\rangle,\langle C\rangle,\langle D\rangle$
 - $L_1: \langle A \rangle, \langle B \rangle, \langle C \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \quad \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$

Ist Pass:

- C_1 : $\langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle$
- $L_1: \langle A \rangle, \langle B \rangle, \langle C \rangle$

2nd Pass:

• $C_2: 3 \times 3$ candidates, $\langle A, A \rangle, \langle A, B \rangle, \langle A, C \rangle,$ $\langle B, A \rangle, \langle B, B \rangle, \langle B, C \rangle, \langle C, A \rangle, \langle C, B \rangle, \langle C, C \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \quad \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$

Ist Pass:

- C_1 : $\langle A \rangle, \langle B \rangle, \langle C \rangle, \langle D \rangle$
- $L_1: \langle A \rangle, \langle B \rangle, \langle C \rangle$
- 2nd Pass:
 - C₂: 3 × 3 candidates, ⟨A, A⟩, ⟨A, B⟩, ⟨A, C⟩, ⟨B, A⟩, ⟨B, B⟩, ⟨B, C⟩, ⟨C, A⟩, ⟨C, B⟩, ⟨C, C⟩
 L₂:?

Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset

Issues with the Apriori Algorithm

- We still need to generate many candidates
- For each candidate, we need to scan the entire dataset

Next, we present the PrefixSpan algorithm.

 An instance of a family of algorithms called Frequent-Pattern (FP) Growth that addresses the above issues.

Today's Agenda

Review of Apriori Algorithm

Sequence Mining

PrefixSpan Algorithm

Prefix & Suffix

 $\langle A, A, A, C, C \rangle$

Prefix	Suffix
$\langle A \rangle$	$\langle A, A, C, C \rangle$
$\langle A, A \rangle$	$\langle A, C, C \rangle$
$\langle A, A, A \rangle$	$\langle C, C \rangle$
$\langle A, A, A, C \rangle$	$\langle C \rangle$

- Divide & Conquer:
 - First find length-1 frequent sequences.
 Suppose there are *m* such cases.

- Divide & Conquer:
 - First find length-1 frequent sequences. Suppose there are *m* such cases.
 - The complete set of frequent patterns can be partitioned into *m* subsets, each subset having the same prefix.

- Divide & Conquer:
 - First find length-1 frequent sequences. Suppose there are *m* such cases.
 - The complete set of frequent patterns can be partitioned into *m* subsets, each subset having the same prefix.
 - Each partition is mined separately. This process is done recursively.

- Divide & Conquer:
 - First find length-1 frequent sequences. Suppose there are *m* such cases.
 - The complete set of frequent patterns can be partitioned into *m* subsets, each subset having the same prefix.
 - Each partition is mined separately. This process is done recursively.

- Divide & Conquer:
 - First find length-1 frequent sequences.
 Suppose there are *m* such cases.
 - The complete set of frequent patterns can be partitioned into *m* subsets, each subset having the same prefix.
 - Each partition is mined separately. This process is done recursively.
- Each partition is a (smaller) "projected" database

Projected database

- Original database:
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $\exists \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix (A):
 - $1 \quad \langle A, A, C, C \rangle$
 - 2 Ø
 - $\exists \langle D, C, A, A, B \rangle$

- Original database:
 - (A, A, A, C, C)

 $2 \langle B, C, B, C, B \rangle$

- $3 \langle A, D, C, A, A, B \rangle$
- $4 \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix $\langle C \rangle$:

- Original database:
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix (C):
 1 (C)

- Original database:
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix $\langle C \rangle$:
 - 1 $\langle C \rangle$
 - $2 \langle B, C, B \rangle$

- Original database:
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix $\langle C \rangle$:
 - 1 $\langle C \rangle$
 - $2 \langle B, C, B \rangle$
 - $\exists \langle A, A, B \rangle$

- Original database:
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- Projected database of Prefix $\langle C \rangle$:
 - 1 $\langle C \rangle$
 - $2 \langle B, C, B \rangle$
 - (A, A, B)
 - $4 \quad \langle B, C, A, A \rangle$

- Original database:
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- ► Projected database of Prefix (C):
 - 1 $\langle C \rangle$
 - $2 \langle B, C, B \rangle$
 - (A, A, B)

 $[4] \langle B, C, A, A \rangle$

- Trick: Frequent items in projected database combines with Prefix (C) to form frequent length-2 sequence!
 - If *B* is frequent, then so is $\langle C, B \rangle$
 - If C is frequent, then so is $\langle C, C \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \quad \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \langle A, C, B, C, A, A \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $\exists \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- ▶ 1st pass: *A* : 3, *B* : 3, *C* : 4, *D* : 1

- Extract frequent sub-sequence (s = 3)
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- ▶ 1st pass: *A* : 3, *B* : 3, *C* : 4, *D* : 1
 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$

- Extract frequent sub-sequence (s = 3)
 - $1 \quad \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- ▶ 1st pass: *A* : 3, *B* : 3, *C* : 4, *D* : 1
 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$
 - ► No frequent seq (any length) w/ prefix D

- Extract frequent sub-sequence (s = 3)
 - $1 \langle A, A, A, C, C \rangle$
 - $2 \langle B, C, B, C, B \rangle$
 - $3 \langle A, D, C, A, A, B \rangle$
 - $4 \quad \langle A, C, B, C, A, A \rangle$
- ▶ 1st pass: *A* : 3, *B* : 3, *C* : 4, *D* : 1
 - Frequent length-1 seq: $\langle A \rangle, \langle B \rangle, \langle C \rangle$
 - ► No frequent seq (any length) w/ prefix D
- Projected database with Prefix $\langle A \rangle$:
 - $1 \quad \langle A, A, C, C \rangle$
 - 2 Ø
 - (D, C, A, A, B)
 - $4 \quad \langle C, B, C, A, A \rangle$

- Projected database with Prefix $\langle A \rangle$:
 - $1 \quad \langle A, A, C, C \rangle$
 - 2 Ø
 - $\exists \langle D, C, A, A, B \rangle$

- Projected database with Prefix $\langle A \rangle$:
 - $1 \quad \langle A, A, C, C \rangle$

2 Ø

- $\exists \langle D, C, A, A, B \rangle$
- $4 \quad \langle C, B, C, A, A \rangle$
- ► Frequent items (*s* = 3): A: 3, B: 2, C: 3
 - Frequent length-2 seq: $\langle A, A \rangle$, $\langle A, C \rangle$

- Projected database with Prefix $\langle A \rangle$:
 - $1 \quad \langle A, A, C, C \rangle$
 - 2 Ø
 - $\exists \langle D, C, A, A, B \rangle$
 - $4 \quad \langle C, B, C, A, A \rangle$
- ► Frequent items (s = 3): A: 3, B: 2, C: 3
 - Frequent length-2 seq: $\langle A, A \rangle$, $\langle A, C \rangle$
- Projected database with Prefix $\langle A, A \rangle$:

1
$$\langle A, C, C \rangle$$

- 2
- $\exists \langle A, B \rangle$
- 4 $\langle A \rangle$

- Projected database with Prefix $\langle A \rangle$:
 - $1 \langle A, A, C, C \rangle$
 - 2 Ø
 - $\exists \langle D, C, A, A, B \rangle$
 - $4 \quad \langle C, B, C, A, A \rangle$
- ► Frequent items (s = 3): A: 3, B: 2, C: 3
 - Frequent length-2 seq: $\langle A, A \rangle$, $\langle A, C \rangle$
- Projected database with Prefix $\langle A, A \rangle$:
 - 1 $\langle A, C, C \rangle$
 - 2 Ø
 - (A, B)
 - 4 $\langle A \rangle$
- ► Frequent items (*s* = 3): A: 3, B: 1, C: 1
 - Frequent length-3 seq: $\langle A, A, A \rangle$

Projected database w/ Prefix ⟨A, A, A⟩:
1 ⟨C, C⟩
2 ∅
3 ⟨B⟩
4 ∅

- Projected database w/ Prefix (A, A, A):
 (C, C)
 - 2 Ø
 - 3 ⟨*B*⟩ 4 Ø
- Frequent items (s = 3): B: 1, C: 1
 - No Frequent length-4 seq with prefix $\langle A, A, A \rangle$

- Projected database w/ Prefix $\langle A, A, A \rangle$:
 - $\begin{array}{c} 1 \quad \langle C, C \rangle \\ \end{array}$
 - 2 Ø 3 〈*B*〉
 - **4** Ø
- Frequent items (s = 3): B: 1, C: 1
 - No Frequent length-4 seq with prefix $\langle A, A, A \rangle$
- ▶ Repeat recursively for Projected databases with Prefix ⟨A, C⟩
- Repeat recursively for Projected databases with Prefix (B)
- Repeat recursively for Projected databases with Prefix (C)

PrefixSpan vs. Apriori Algorithm

PrefixSpan	Apriori
Generate 1-item only,	Generates candidate
then combine with prefix	sequences
Scan projected	Scan whole database
database	per candidate
Depth-first search	Breadth-first search

Main cost of PrefixSpan is construction of projected database. Can be implemented by pointers

- Sequence Mining problem:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
 - Customers who bought camera are likely to buy printer later

- Sequence Mining problem:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
 - Customers who bought camera are likely to buy printer later
- Apriori Algorithm: works ok but costly

- Sequence Mining problem:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
 - Customers who bought camera are likely to buy printer later
- Apriori Algorithm: works ok but costly
- PrefixSpan: Divide & Conquer
 - Partition data by prefix.
 - Mine frequent item on smaller database then combine with prefix

- Sequence Mining problem:
 - ► Customer 1: 〈{*camera*, USB}, {*printer*}〉
 - ► Customer 2: 〈{*camera*}, {*printer*}, {*ink*}〉
 - Customers who bought camera are likely to buy printer later
- Apriori Algorithm: works ok but costly
- PrefixSpan: Divide & Conquer
 - Partition data by prefix.
 - Mine frequent item on smaller database then combine with prefix
- Both still exploit Monotonicity

Next Week

- Graph Mining
- Homework posted online