Artificial Intelligence： Search \＆Mining

2015 人工知能：探索とマイニング

Graph Mining

Kevin Duh 2015－06－02

Today's Agenda

Graph Data

Properties of Graphs

Community Detection

Graph data

Graph $G=($ Vertices V, Edges $E)$
Edges may be weighted, undirected or directed.

Graph data appears everywhere

Figure: Chemical structure of caffeine
http://en.wikipedia.org/wiki/Caffeine\#mediaviewer/File:Koffein_-_Caffeine.svg

Graph data appears everywhere

Figure : Yeast protein interaction network
http://www.nature.com/nature/journal/v411/n6833/full/411041a0.html

Graph data appears everywhere

Figure: Collaboration graph among researchers
http://www.pnas.org/content/99/12/7821.full

Figure : Facebook Friendship Graph

https:
//www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Many ways to make graphs

Facebook example:

- Friendship graph: vertices = users; edges = is-a-friend

Many ways to make graphs

Facebook example:

- Friendship graph: vertices = users; edges = is-a-friend
- Activity graph: vertices = users; edges
= recently-talked

Many ways to make graphs

Facebook example:

- Friendship graph: vertices = users; edges = is-a-friend
- Activity graph: vertices = users; edges
= recently-talked
- Like! graph: vertices = posts and users (bipartite); edges = user-likes-post

Many ways to make graphs

Facebook example:

- Friendship graph: vertices = users; edges = is-a-friend
- Activity graph: vertices = users; edges
= recently-talked
- Like! graph: vertices = posts and users (bipartite); edges = user-likes-post

Graph mining questions we might ask

- Drug design
- What are frequent sub-structures in a chemical database?
- Can we search for similar chemicals?

Graph mining questions we might ask

- Drug design
- What are frequent sub-structures in a chemical database?
- Can we search for similar chemicals?
- Biology research
- What are the central proteins in a metabolic pathway, if any?

Graph mining questions we might ask

- Drug design
- What are frequent sub-structures in a chemical database?
- Can we search for similar chemicals?
- Biology research
- What are the central proteins in a metabolic pathway, if any?
- Social network analysis
- Does there exist distinct communities?
- How do links form?
- How do messages get disseminated?
- etc.

Tools/Concepts for answering graph mining questions

- Community Detection
- Graph Clustering
- Centrality Analysis, e.g. PageRank
- Link Prediction
- Frequent sub-graph mining
- Information diffusion on graphs
- Graph evolution, etc.

Today's Agenda

Graph Data

Properties of Graphs

Community Detection

Characterizing Graphs: Diameter

- Diameter of graph $G=$ maximum distance between all pairs of vertices

Characterizing Graphs: Diameter

- Diameter of graph $G=$ maximum distance between all pairs of vertices
- Distance between a pair of vertices
(v_{1}, v_{2}) is measured by length of shortest path from v_{1} to v_{2}.

Characterizing Graphs: Diameter

- Diameter of graph $G=$ maximum distance between all pairs of vertices
- Distance between a pair of vertices (v_{1}, v_{2}) is measured by length of shortest path from v_{1} to v_{2}.
- Related concept: average distance

Characterizing Graphs: Diameter

- Diameter of graph $G=$ maximum distance between all pairs of vertices
- Distance between a pair of vertices (v_{1}, v_{2}) is measured by length of shortest path from v_{1} to v_{2}.
- Related concept: average distance
- Small-World Phenomenon: 6 degrees of separation between any two people (Milgram experiment)

Characterizing Graphs: Degree

- Degree of a vertex v_{i} : $d_{i}=$ Number of edges for vertex v_{i}
- For directed graphs: separately define in-degree \& out-degree

Characterizing Graphs: Degree

- Degree of a vertex v_{i} : $d_{i}=$ Number of edges for vertex v_{i}
- For directed graphs: separately define in-degree \& out-degree
- Average degree = average number of edges per vertex

Characterizing Graphs: Degree

- Degree of a vertex v_{i} : $d_{i}=$ Number of edges for vertex v_{i}
- For directed graphs: separately define in-degree \& out-degree
- Average degree = average number of edges per vertex
- Degree distribution:
- uniform or power-law?
- are there popular hub vertices?

Power-law degree distribution is prevelant in real graphs

- Consider Gaussian distribution:
$p(d) \propto \exp \left(-(d-\mu)^{2}\right)$: exponentially fast decay as d moves away from μ

Power-law degree distribution is prevelant in real graphs

- Consider Gaussian distribution:
$p(d) \propto \exp \left(-(d-\mu)^{2}\right)$: exponentially fast decay as d moves away from μ
- Power law: $p(d) \propto 1 / d^{\beta}$ gives heavy-tail, i.e. vertices with very high degree can exist
- straight-line on log-log plot: $\log (p(d))=\beta \log (d)$

Power-law in WWW graphs

[Broder et. al., Graph Structure in the Web]

Characterizing Graphs: Clustering coefficient

- Neighborhood of vertex v_{i} :

$$
N_{i}=\left\{v_{j}: e_{i j} \in E \wedge e_{j i} \in E\right\}
$$

- Cluster coefficient of v_{i} :

$$
C_{i}=\frac{\left|e_{j k}: v_{j} \in N_{i}, v_{k} \in N_{i}, e_{j k} \in E\right|}{\left|N_{i}\right|\left(\left|N_{i}\right|-1\right)}
$$

i.e. percentage of triangles (i,j,k)

- Cluster coefficient C of graph $=\operatorname{avg} C_{i}$

Quiz

What is the diameter? degree distribution? cluster coefficient of vertex a ?

Erdös-Rényi model of random graph

1 Start with N vertices
2 Connect every pair of vertices with probability p
Graph will have about $p N(N-1) / 2$ edges distributed randomly

Erdős-Rényi model of random graph

1 Start with N vertices
$_$Connect every pair of vertices with probability p
Graph will have about $p N(N-1) / 2$ edges distributed randomly

- Diameter $=\log (\mathrm{N}) \rightarrow$ "small world"
- Degree distribution = Poisson $(p N)$, not power-law
- Clustering coefficient = p, no hierarchical clusters

Properties of Real-world Graphs

From: Albert \& Barabási, Statistical mechanics of complex networks, 2002

Data	WWW [Broder]	Co-Author [Newman]	Movie [Watts]
size $\|\mathrm{V}\|$	2×10^{8}	56,627	225,226
avg degree	7.5	173	61
power-law β	$2.71,2.1$	1.2	n / a
avg distance ℓ	16	4	3.65
$\ell_{\text {randomgraph }}$	8.85	2.12	2.99
cluster coeff C	n/a	0.726	0.79
$C_{\text {randomgraph }}$	n/a	0.003	0.00027

Today's Agenda

Graph Data

Properties of Graphs

Community Detection

Community Detection

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, find subsets of V that form communities

Figure : Do you see distinct communities of researchers in this collaboration graph?

A Method for Community Detection

 Betweenness of edge $(A, B)=$ \# pairs of endpoints $X \& Y$ such that (A, B) lies on the shortest path between X and Y

Figure : Betweenness example

A Method for Community Detection

 To detect communities, delete edges with high betweeness

Figure : (B, D) has highest betweeness. So communities are $\{A, B, C\}$ and $\{D, E, G, F\}$

All figures in this section come from http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

Betweenness Calculation: Girvan-Newman Algorithm

1. Run breadth-first search from a vertex 2. Label each vertex and edge with the \# of shortest paths that passes through it.

Repeat for each vertex, sum edge scores / 2.

Figure : BFS from E

Betweenness Calculation: preparation

label from top-down:

- root: 1
- other vertex: sum of parent labels result: for each X, \# of shortest paths from E to X is known

Figure : top-down labeling (preparation)

Betweenness Calculation:

 vertex/edge labeling in detail label from bottom-up:- leaf vertex: 1
- internal vertex: 1 +
children edge scores
- edge: a fraction of the child vertex score
fraction computed by \# of shortest paths to child
through edge (preparation)

Figure : bottom-up labeling

Figure : top-down labeling (preparation)

Figure: bottom-up labeling: score indicates \# of shortest paths from E that passes through.

Wrap-up: Community Detection by Betweenness

Betweenness calculation by BFS
To find community, delete edges with high betweenness
Cost: $\mathrm{O}(|\mathrm{E}|)$ per BFS \& labeling, so $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$ total
Many other methods available!

Summary

- Graph data are everywhere

Summary

- Graph data are everywhere
- Many graph mining tools \& problems
- frequent sub-graph mining, centrality analysis, link prediction, community detection, etc.

Summary

- Graph data are everywhere
- Many graph mining tools \& problems
- frequent sub-graph mining, centrality analysis, link prediction, community detection, etc.
- Properties of graphs:
- diameter, small-world
- degree distribution, power-law
- cluster coefficient

Summary

- Graph data are everywhere
- Many graph mining tools \& problems
- frequent sub-graph mining, centrality analysis, link prediction, community detection, etc.
- Properties of graphs:
- diameter, small-world
- degree distribution, power-law
- cluster coefficient
- Community Detection
- a method based on betweenness

