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Graph data

Graph G = (Vertices V , Edges E)
Edges may be weighted, undirected or
directed.
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Graph data appears everywhere

Figure : Chemical structure of caffeine
http://en.wikipedia.org/wiki/Caffeine#mediaviewer/File:Koffein_-_Caffeine.svg
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Graph data appears everywhere

Figure : Yeast protein interaction network
http://www.nature.com/nature/journal/v411/n6833/full/411041a0.html
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Graph data appears everywhere

Figure : Collaboration graph among researchers
http://www.pnas.org/content/99/12/7821.full
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Graph data appears everywhere

Figure : Facebook Friendship Graph
https:
//www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
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Many ways tomake graphs

Facebook example:

▶ Friendship graph: vertices = users;
edges = is-a-friend

▶ Activity graph: vertices = users; edges
= recently-talked

▶ Like! graph: vertices = posts and users
(bipartite); edges = user-likes-post
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Graphmining questions wemight ask
▶ Drug design

▶ What are frequent sub-structures in a
chemical database?

▶ Can we search for similar chemicals?

▶ Biology research
▶ What are the central proteins in a

metabolic pathway, if any?
▶ Social network analysis

▶ Does there exist distinct communities?
▶ How do links form?
▶ How do messages get disseminated?

▶ etc.
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Tools/Concepts for answering graph
mining questions

▶ Community Detection
▶ Graph Clustering
▶ Centrality Analysis, e.g. PageRank
▶ Link Prediction
▶ Frequent sub-graph mining
▶ Information diffusion on graphs
▶ Graph evolution, etc.
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Characterizing Graphs: Diameter

▶ Diameter of graph G =maximum
distance between all pairs of vertices

▶ Distance between a pair of vertices
(v1, v2) is measured by length of shortest
path from v1 to v2.

▶ Related concept: average distance
▶ Small-World Phenomenon: 6 degrees

of separation between any two
people (Milgram experiment)
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Characterizing Graphs: Degree

▶ Degree of a vertex vi:
di = Number of edges for vertex vi

▶ For directed graphs: separately define
in-degree & out-degree

▶ Average degree = average number of
edges per vertex

▶ Degree distribution:
▶ uniform or power-law?
▶ are there popular hub vertices?
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Power-law degree distribution is
prevelant in real graphs

▶ Consider Gaussian distribution:
p(d) ∝ exp(−(d − µ)2): exponentially
fast decay as d moves away from µ

▶ Power law: p(d) ∝ 1/dβ gives
heavy-tail, i.e. vertices with very high
degree can exist

▶ straight-line on log-log plot:
log(p(d)) = β log(d)
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Power-law inWWWgraphs

[Broder et. al., Graph Structure in the Web]
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Characterizing Graphs: Clustering
coefficient

▶ Neighborhood of vertex vi:
Ni = {v j : ei j ∈ E ∧ e ji ∈ E}

▶ Cluster coefficient of vi:

Ci =
|e jk : v j ∈ Ni, vk ∈ Ni, e jk ∈ E|

|Ni|(|Ni| − 1)

i.e. percentage of triangles (i,j,k)
▶ Cluster coefficient C of graph = avg Ci
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Quiz

What is the diameter? degree distribution?
cluster coefficient of vertex a?
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Erdős-Rényi model of random graph
1 Start with N vertices
2 Connect every pair of vertices with

probability p
Graph will have about pN(N − 1)/2 edges
distributed randomly

▶ Diameter = log(N)→ ”small world”
▶ Degree distribution = Poisson(pN),

not power-law
▶ Clustering coefficient = p, no

hierarchical clusters
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Properties of Real-world Graphs
From: Albert & Barabási, Statistical mechanics of
complex networks, 2002

Data WWW Co-Author Movie
[Broder] [Newman] [Watts]

size |V| 2 × 108 56,627 225,226
avg degree 7.5 173 61
power-law β 2.71, 2.1 1.2 n/a
avg distance ℓ 16 4 3.65
ℓrandomgraph 8.85 2.12 2.99

cluster coeff C n/a 0.726 0.79
Crandomgraph n/a 0.003 0.00027
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Community Detection
Given a graph G=(V,E), find subsets of V
that form communities

Figure : Do you see distinct communities of
researchers in this collaboration graph?
http://www.pnas.org/content/99/12/7821.full 33 / 44
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AMethod for Community Detection
Betweenness of edge (A,B) = # pairs of
endpoints X & Y such that (A,B) lies on the
shortest path between X and Y

Figure : Betweenness example
All figures in this section come from http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
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AMethod for Community Detection
To detect communities, delete edges with
high betweeness

Figure : (B,D) has highest betweeness. So
communities are {A,B,C} and {D,E,G,F}
All figures in this section come from http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
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Betweenness Calculation:
Girvan-Newman Algorithm
1. Run breadth-first
search from a vertex
2. Label each vertex and
edge with the # of
shortest paths that
passes through it.

Repeat for each vertex,
sum edge scores / 2.

Figure : BFS from E
36 / 44



Betweenness Calculation:
preparation

label from top-down:
- root: 1
- other vertex: sum of
parent labels
result: for each X, # of
shortest paths from E
to X is known

Figure : top-down
labeling (preparation)
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Betweenness Calculation:
vertex/edge labeling in detail
label from bottom-up:
- leaf vertex: 1
- internal vertex: 1 +

children edge scores
- edge: a fraction of the

child vertex score
fraction computed by # of

shortest paths to child

through edge (preparation)
Figure : bottom-up
labeling
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Figure : top-down
labeling (preparation)

Figure : bottom-up
labeling: score indicates # of
shortest paths from E that
passes through.
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Wrap-up: Community Detection by
Betweenness

Betweenness calculation by BFS

To find community, delete
edges with high betweenness

Cost: O(|E|) per BFS & labeling,
so O(|V||E|) total

Many other methods available!
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Summary
▶ Graph data are everywhere

▶ Many graph mining tools & problems
▶ frequent sub-graph mining, centrality

analysis, link prediction, community
detection, etc.

▶ Properties of graphs:
▶ diameter, small-world
▶ degree distribution, power-law
▶ cluster coefficient

▶ Community Detection
▶ a method based on betweenness
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